

XYalign: Inferring and Correcting for Sex Chromosome Ploidy in Next-Generation Sequencing Data

	Authors

	Timothy Webster, Madeline Couse, Bruno Grande, Eric Karlins, Tanya Phung, Phillip Richmond, Whitney Whitford, Melissa Wilson Sayres

	Date

	Apr 11, 2019

	Release

	1.1.6

	Download

	Github Repository [https://github.com/WilsonSayresLab/XYalign/]

	Forum/Mailing List

	Google Group [https://groups.google.com/forum/#!forum/xyalign]

	Issues

	Please submit any bugs, problems, or feature requests as issues via Github [https://github.com/WilsonSayresLab/XYalign/issues]

The high degree of similarity between gametologous sequences on the sex chromosomes can lead to the misalignment of sequencing reads and substantially affect variant calling. Here we present XYalign, a new tool that (1) aids in the inference of sex chromosome content using NGS data, (2) remaps reads based on the inferred sex chromosome complement of the individual, and (3) outputs quality, depth, and allele-balance metrics across chromosomes.

Contents:

	Installation
	Operating System

	Requirements

	Obtaining XYalign

	Pip

	Usage Overview
	The Basics

	Recommendations for Incorporating XYalign into Pipelines

	XYalign - Speed and Memory

	Exome data

	Nonhuman genomes

	Analyzing arbitrary chromosomes

	Using XYalign as a Python library

	Full List of Command-Line Flags

	Frequently Asked Questions
	Does XYalign require X and Y chromosomes?

	Will XYalign work with genomes from other organisms?

	API
	xyalign

	xyalign package

	xyalign.assemble module

	xyalign.bam module

	xyalign.ploidy module

	xyalign.reftools module

	xyalign.utils module

	xyalign.variants module

	xyalign.xyalign module

	Release History
	1.1.6

	1.1.5

	1.1.3

	1.1.2

	1.1.1

	1.1.0

	1.0.0

	0.1.1

	0.1.0

	0.0.1 Prerelease

Indices and tables

	Index

	Module Index

	Search Page

Installation

Operating System

XYalign has been tested on Linux and Mac operating systems, but has
not been tested on Windows. This isn’t to say it won’t work, however
we are unprepared to offer any Windows support at this time.

Requirements

XYalign has a number of required Python packages and external programs:

Python: 2.7

Python packages:
 matplotlib
 numpy
 pandas
 pybedtools
 pysam
 scipy

External Programs:
 bbmap (XYalign uses repair.sh and shuffle.sh from this suite of tools)
 bedtools
 bwa
 platypus
 sambamba
 samtools

Note

Bedtools is required for pybedtools and must be added to one’s PATH. XYalign
will check that it is available by calling bedtools. Other external programs
do not, however, need to be on one’s PATH and can be provided to XYalign
using the appropriate flag(s):

--repairsh_path
--shufflesh_path
--bwa_path
--platypus_path
--samtools_path
--sambamba_path

Obtaining XYalign

We strongly recommend users install and manage all packages and programs using
Anaconda. To do so:

1. First download and install either
Anaconda [https://www.continuum.io/downloads]
or Miniconda [http://conda.pydata.org/miniconda.html] (both work well,
Miniconda is a lightweight version of Anaconda).

	Be sure to allow Anaconda to append to your PATH (it will ask for permission to do so during installation)

	You can check this after installation with the command (from the command line):

which python

which should point you to the python installed in your Anaconda or
Miniconda directory.

	Linux and Mac users can finish installation with the following commands (note that \ indicates a continuation of the command on the next line):

conda config --add channels r

conda config --add channels defaults

conda config --add channels conda-forge

conda config --add channels bioconda

conda create -n xyalign_env xyalign

This assumes you’re installing into a new environment called “xyalign_env”.

Note

You need to add channels in this order. Doing so will ensure priority of channels
will go in the order bioconda > conda-forge > defaults > r. This is important because
the source of bzip2 (required for many programs) needs to be conda-forge (the version
in defaults will cause many programs to miss a required library).

You can then load the new environment (containing all required programs and packages) with:

source activate xyalign_env

To use Bioconda to simply install XYalign into your current environment, load the channels in using the
commands listed above and then type:

conda install xyalign

In all cases, this will install XYalign, its dependancies, and all external programs that it
calls.

Pip

XYalign can also be installed using pip, a tool used for installing Python packages,
with the command:

pip install xyalign

However, note that this will not install any external programs that XYalign calls on
for its various functions.

Usage Overview

The Basics

Requirements

The different modules of XYalign have slightly different requirements, but in
general you’ll need: a bam file and the reference fasta file
used to generate it (it’s critically important, as using a different fasta will
cause errors). XYalign also requires a list of chromosomes to analyze,
the name of the X chromosome, and the name of the Y chromosome (if in the assembly). The chromosome names must exactly match
those in the bam header and reference fasta - ‘chr19’ is not equivalent to ‘19’, for example.

You also need a variety of python packages and external programs installed. See
Installation for more information.

The Pipeline

Xyalign is composed of the following modules that can be thought of as steps in the pipeline (with the exception of CHROM_STATS):

PREPARE_REFERENCE
ANALYZE_BAM
CHARACTERIZE_SEX_CHROMS
STRIP_READS
REMAPPING
CHROM_STATS

Each of these modules can be invoked as a command line flag with no arguments
(e.g., --PREPARE_REFERENCE), and XYalign will execute only that module. If no flags
are provided, XYalign will run the full pipeline in the following order: PREPARE_REFERENCE ->
ANALYZE_BAM -> CHARACTERIZE_SEX_CHROMS -> STRIP_READS -> REMAPPING -> ANALYZE_BAM. This will:

1. Prepare two reference genomes - one with the Y chromosome masked, the other with both X and Y
unmasked. In both cases, XYalign will optionally mask other regions of the genome provided in an
input bed file (using the flag --reference_mask <file1.bed> <file2.bed> ...).

2. Analyze the bam file to calculate metrics related to read balance, read depth, and mapping quality.
Read depth and mapping quality are calculated in windows, and either --window_size <integer window size>
or --target_bed <path to target bed file> must be provided. --window_size is the fixed size
of windows to use in a nonoverlapping sliding window analysis in bases (e.g., 10000 for 10 kb windows). --target_bed
is a bed file of targets to use as windows, e.g. exome capture targets.

3. Plot read balance, depth, and mapq for each chromosome, and output bed files of high
and low quality regions, based on either default or user-defined thresholds.

4. Run a series of tests comparing ANALYZE_BAM metrics for each chromosome. If the flag
--CHARACTERIZE_SEX_CHROMS is invoked, XYalign will carry out the bam analysis steps above
and then proceed to these tests.

5. Strip and sort reads mapping to the sex chromosomes, map to the reference with
the appropriate masking (step 1) based on the results of step 4, and replace the sex
chromosome alignments in the original bam file with these new ones.

	Analyze the new bam file as in steps 4 and 5.

CHROM_STATS provides quicker, coarser statistics and is designed for cases in which a reference genome is well-understood
and when multiple samples are available.

Suggested Command Lines

Below we highlight example command lines, as well as useful optional flags for
each module (PREPARE_REFERENCE, ANALYZE_BAM, CHARACTERIZE_SEX_CHROMS, STRIP_READS, REMAPPING, CHROM_STATS)
as well as the full pipeline. You can find a complete list of command line flags,
their descriptions, and their defaults from the command line:

xyalign -h

In all examples, reference.fasta is our input reference in fasta format, input.bam
is our input bam file (created using reference.fasta), sample1 is the ID of our
sample, and sample1_output is the name of our desired output directory. We’ll
analyze chromosomes named ‘chr19’, ‘chrX’, and ‘chrY’, with chrX representing the X chromosome
and chrY representing the Y chromosome. We’ll assume that all programs are in
our PATH and can be invoked by typing the program name from the command line
without any associated path (e.g., samtools). We’ll also assume that we’re
working on a cluster with 4 cores available to XYalign.

1. PREPARE_REFERENCE

xyalign --PREPARE_REFERENCE --ref reference.fasta \
--output_dir sample1_output --sample_id sample1 --cpus 4 --reference_mask mask.bed \
--x_chromosome chrX --y_chromosome chrY

Here, mask.bed is a bed file containing regions to mask in both output reference
genomes (e.g., coordinates for the pseudoautosomal regions on the Y chromosome). More
than one can be included as well (e.g., --reference_mask mask.bed mask2.bed).

This will output two reference genomes, one with the Y chromosome completely masked
(defaults to sample1_output/reference/xyalign_noY.masked.fa) and one with
an unmasked Y (defaults to sample1_output/reference/xyalign_withY.masked.fa). These
default names can be changed with the --xx_ref_out_name and
--xy_ref_out_name flags. With these flags, files will still be
deposited in sample1_output/reference. To deposit these files in a specific location,
use --xx_ref_out and --xy_ref_out with the full path to and name of desired
output files. You can optionally use BWA to index the output fasta files as well
by using the “–bwa_index” flag.

2. ANALYZE_BAM

xyalign --ANALYZE_BAM --ref reference.fasta --bam input.bam \
--output_dir sample1_output --sample_id sample1 --cpus 4 --window_size 10000 \
--chromosomes chr19 chrX chrY --x_chromosome chrX --y_chromosome chrY

Here, 10000 is the fixed window size to use in (nonoverlapping) sliding window
analyses of the bam file. If you’re working with targeted sequencing data (e.g. exome),
you can provide a list of regions to use instead of windows. For example, if your
regions are in targets.bed you would add the flag: --targed_bed targets.bed.

This command line will default to a minimum quality of 30 (SNP), genotype quality
of 30 (SNP), variant depth of 4 (SNP), and mapping quality of 20 (bam window). These
can be set with the flags --variant_site_quality, --variant_genotype_quality,
--variant_depth, and --mapq_cutoff, respectively.
One can also apply depth filters to bam windows with --min_depth_filter and
--max_depth_filter.

This will output a series of plots in sample1_output/plots, bed files containing
high and low quality windows in sample1_output/bed, and the entire dataframe
with values for each measure in each window in sample1_output/bed.

3. CHARACTERIZE_SEX_CHROMS

xyalign --CHARACTERIZE_SEX_CHROMS --ref reference.fasta --bam input.bam \
--output_dir sample1_output --sample_id sample1 --cpus 4 --window_size 10000 \
--chromosomes chr19 chrX chrY --x_chromosome chrX --y_chromosome chrY

Settings here are identical to 3 because the first step of CHARACTERIZE_SEX_CHROMS
involves running ANALYZE_BAM.

In addition to everything in ANALYZE_BAM, CHARACTERIZE_SEX_CHROMS will output the
results of a series of statistical tests in sample1_output/results.

4. STRIP_READS

xyalign --STRIP_READS --ref reference.fasta --bam input.bam \
--output_dir sample1_output --sample_id sample1 --cpus 4 \
--chromosomes chr1 chr2 chr3 chr4 chr5 --xmx 2g \
--fastq_compression 5

This will strip the reads, by read group, from chromosomes 1-5 and output
a pair of fastqs per read group, as well as the read groups themselves, and a
text file connecting fastqs with their respective read groups in the directory
sample1_output/fastq. If we were working with single-end reads, we would
have had to include the flag --single_end. Here, the reference file isn’t
used at all (it’s a general requirement of XYalign), so a dummy file can be used
in its place. To strip reads from the entire genome (including unmapped), use
`` –chromosomes ALL``. --xmx tells the Java programs that XYalign is calling
how much memory to use (e.g., --xmx 2g provides 2 GB ram). --fastq_compression
determines the compression level of output fastqs (between 0 and 9, with 0 leaving
files uncompressed).

5. REMAPPING

xyalign --REMAPPING --ref reference.fasta --bam input.bam \
--output_dir sample1_output --sample_id sample1 --cpus 4 \
--chromosomes chr19 chrX chrY --x_chromosome chrX --y_chromosome chrY \
--xx_ref_in sample1_output/reference/xyalign_noY.masked.fa \
--xy_ref_in sample1_output/reference/xyalign_withY.masked.fa \
--y_absent

Here, we’ve input our reference genomes generated in step 1 (if we don’t, XYalign
will repeat that step). We’ve also used the flag --y_absent to indicate that
there is no Y chromosome in our sample (perhaps as the result of step 3, or outside
knowledge). If a Y is present, we would have used --y_present instead. REMAPPING
requires one of those two flags, as it does not involve any steps to estimate
sex chromosome content (those are carried out in CHARACTERIZE_SEX_CHROMS). Note that
REMAPPING will run STRIP_READS first.

	Full pipeline

And if we want to run the full XYalign pipeline on a sample, we’d use a command line
along the lines of:

xyalign --ref reference.fasta --bam input.bam \
--output_dir sample1_output --sample_id sample1 --cpus 4 --reference_mask mask.bed \
--window_size 10000 --chromosomes chr19 chrX chrY \
--x_chromosome chrX --y_chromosome chrY

We could have optionally provided preprocessed reference genomes with --xx_ref_in
and --xx_ref_in, as in 4. We could have also used --y_absent or --y_present
to force mapping to a certain reference. Because we didn’t include either of these
two flags, XYalign will use --sex_chrom_calling_threshold to determine the
sex chromosome complement (default is 2.0).

6. CHROM_STATS

xyalign --CHROM_STATS --use_counts --bam input1.bam input2.bam input3.bam --ref null \
--output_dir directory_name --sample_id analysis_name --chromosomes chr19 chrX chrY

Here, --use_counts simply grabs the number of reads mapped to each chromosome from the
bam index. It’s by far the fastest, yet coarsest option. Running without this flag
will calculated depth and mapq along each chromosome for more detail, but this will take longer.

Recommendations for Incorporating XYalign into Pipelines

While the full XYalign pipeline will be useful in certain situations, we feel that
the following pipeline is better suited to most users’ needs and will save time and space.

	Use XYalign PREPARE_REFERENCE to prepare Y present and Y absent genomes.

2. Preliminarily map reads to the standard reference (or Y present) and sort the bam file
using any mapper and sorting algorithm. We have found that one can usually use smaller
dataset for this step (e.g., a whole exome sequencing run or one lane of a whole genome
sequencing run).

3. Run CHARACTERIZE_SEX_CHROMS, to analyze the bam file, output plots, and estimate
ploidy. If a number of samples are available and sex chromosomes are well-differentiated
(as in humans), consider using CHROM_STATS with plot_count_stats.

4. Remap reads to the fasta produced in 1 corresponding to the sex chromosome
complement characterized in 3. E.g., if Y is not detected, map to Y absent. This time
run full pipeline of mapping, sorting, removing duplicates, etc., using users’ preferred
tools/pipeline.

	Optionally run ANALYZE_BAM on bam file produced in 4.

	Call variants using user-preferred caller.

7. Analyze variants taking into account ploidy estimated in 3, and consider masking
low quality regions using bed files output in 5.

XYalign - Speed and Memory

The minimum memory requirements for XYalign are determined by external programs,
rather than any internal code. Right now, the major limiting step is bwa indexing
of reference genomes which requires 5-6 GB of memory to index a human-sized genome. In addition,
in certain situations (e.g., removing all reads from deep coverage genome data with
a single - or no - read group) the STRIP_READS module will require a great deal
of memory to sort and match paired reads (the memory requirement is that of the
external program repair.sh).

The slowest parts of the pipeline also all involve steps relying on external programs, such as
genome preparation, variant calling, read mapping, swapping sex chromosome alignments, etc.
In almost all cases, you’ll see substantial increases in the speed of the pipeline by increasing the
number of threads/cores. You must provide information about the number of cores available
to XYalign with the --cpus flag (XYalign will assume only a single thread is
available unless this flag is set).

Exome data

XYalign handles exome data, with a few minor considerations. In particular, either setting
--window_size to a smaller value, perhaps 5000 or less, or inputting
targets instead of a window size (--target_bed targets.bed) will be critical
for getting more accurate window measures. In addition, users should manually
check the results of CHARACTERIZE_SEX_CHROMS for a number of samples to get a feel
for expected values on the sex chromosomes, as these values are likely to vary among
experimental design (especially among different capture kits).

Nonhuman genomes

XYalign will theoretically work with any genome, and on any combination of chromosomes
or scaffolds (see more on the latter below). Simply provide the names of the
chromosomes/scaffolds to analyze and the names of the sex chromosomes (e.g.,
--chromosomes chr1a chr1b chr2 lga lgb --x_chromosome lga --y_chromosome lgb
if our x_linked scaffold was lga and y_linked scaffold was lgb, and we wanted
to compare these scaffolds to chromosomes: chr1a chr1b and chr2). However,
please note that, as of right now, XYalign does not support multiple X or Y
chromosomes/scaffolds (we are planning on supporting this soon though).

Keep in mind, however, that read balance, mapq, and depth ratios might differ
among organisms, so default XYalign settings will likely not be appropriate in
most cases. Instead, if multiple samples are available, we recommend running
XYalign’s CHARACTERIZE_SEX_CHROMS on each sample (steps 2-3 in
“Recommendations for Incorporating XYalign into pipelines” above)
using the same output directory for all samples. One can then quickly concatenate
results (we recommend starting with bootstrap results) and plot them to look
for clustering of samples (see the XYalign publication for examples of this).

Analyzing arbitrary chromosomes

Currently, XYalign requires a minimum of two chromosomes (an “autosome and an “x chromosome”)
for analyses in ANALYZE_BAM and CHARACTERIZE_SEX_CHROMS (and therefore, the whole pipeline)
These chromosomes, however, can be arbitrary. Below, we highlight two example cases:
looking for evidence of Trisomy 21 in human samples,
and running the full XYalign pipeline on a ZW sample (perhaps a bird,
squamate reptile, or moth).

If one wanted to look for evidence of Trisomy 21 in human data mapped to hg19 (which uses
“chr” in chromosome names), s/he could use a command along the lines of:

xyalign --CHARACTERIZE_SEX_CHROMS --ref reference.fasta --bam input.bam \
--output_dir sample1_output --sample_id sample1 --cpus 4 --window_size 10000 \
--chromosomes chr1 chr10 chr19 chr21 --x_chromosome chr21

This would run the CHARACTERIZE_SEX_CHROMS module, systematically comparing
chr21 to chr1, chr10, and chr19.

To run the full pipeline on a ZW sample (in ZZ/ZW systems, males are ZZ and females
are ZW), one could simply run a command like (assuming the Z scaffold was named
“scaffoldz” and the W scaffold was named “scaffoldw”):

xyalign --ref reference.fasta --bam input.bam \
--output_dir sample1_output --sample_id sample1 --cpus 4 --reference_mask mask.bed \
--window_size 10000 --chromosomes scaffold1 scaffoldz scaffoldw --x_chromosome scaffoldz \
--y_chromosome scaffoldw

In this example, it’s important that the the “X” and “Y” chromosomes are assigned in this way
because PREPARE_REFERENCE (the first step in the full pipeline) will create two
reference genomes: one with the “Y” completely masked, and one with both “X” and “Y”
unmasked. This command will therefore create the appropriate references (a ZW and
a Z only). Other organisms or uses might not require this consideration.

Using XYalign as a Python library

All modules in the XYalign/xyalign directory are designed to support the command
line program XYalign. However, some classes and functions might be of use in other
circumstances. If you’ve installed XYalign as described in Installation, then you
should be able to import XYalign libraries just like you would for any other Python package. E.g.:

from xyalign import bam

Or:

import xyalign.bam

Full List of Command-Line Flags

	This list can also be produced with the command::

	xyalign -h

Flags:

-h, --help show this help message and exit
--bam [BAM [BAM ...]]
 Full path to input bam files. If more than one
 provided, only the first will be used for modules
 other than --CHROM_STATS
--cram [CRAM [CRAM ...]]
 Full path to input cram files. If more than one
 provided, only the first will be used for modules
 other than --CHROM_STATS. Not currently supported.
--sam [SAM [SAM ...]]
 Full path to input sam files. If more than one
 provided, only the first will be used for modules
 other than --CHROM_STATS. Not currently supported.
--ref REF REQUIRED. Path to reference sequence (including file
 name).
--output_dir OUTPUT_DIR, -o OUTPUT_DIR
 REQUIRED. Output directory. XYalign will create a
 directory structure within this directory
--chromosomes [CHROMOSOMES [CHROMOSOMES ...]], -c [CHROMOSOMES [CHROMOSOMES ...]]
 Chromosomes to analyze (names must match reference
 exactly). For humans, we recommend at least chr19,
 chrX, chrY. Generally, we suggest including the sex
 chromosomes and at least one autosome. To analyze all
 chromosomes use '--chromosomes ALL' or '--chromosomes
 all'.
--x_chromosome [X_CHROMOSOME [X_CHROMOSOME ...]], -x [X_CHROMOSOME [X_CHROMOSOME ...]]
 Names of x-linked scaffolds in reference fasta (must
 match reference exactly).
--y_chromosome [Y_CHROMOSOME [Y_CHROMOSOME ...]], -y [Y_CHROMOSOME [Y_CHROMOSOME ...]]
 Names of y-linked scaffolds in reference fasta (must
 match reference exactly). Defaults to chrY. Give None
 if using an assembly without a Y chromosome
--sample_id SAMPLE_ID, -id SAMPLE_ID
 Name/ID of sample - for use in plot titles and file
 naming. Default is sample
--cpus CPUS Number of cores/threads to use. Default is 1
--xmx XMX Memory to be provided to java programs via -Xmx. E.g.,
 use the flag '--xmx 4g' to pass '-Xmx4g' as a flag
 when running java programs (currently just repair.sh).
 Default is 'None' (i.e., nothing provided on the
 command line), which will allow repair.sh to
 automatically allocate memory. Note that if you're
 using --STRIP_READS on deep coverage whole genome
 data, you might need quite a bit of memory, e.g. '--
 xmx 16g', '--xmx 32g', or more depending on how many
 reads are present per read group.
--fastq_compression {0,1,2,3,4,5,6,7,8,9}
 Compression level for fastqs output from repair.sh.
 Between (inclusive) 0 and 9. Default is 3. 1 through 9
 indicate compression levels. If 0, fastqs will be
 uncompressed.
--single_end Include flag if reads are single-end and NOT paired-
 end.
--version, -V Print version and exit.
--no_cleanup Include flag to preserve temporary files.
--PREPARE_REFERENCE This flag will limit XYalign to only preparing
 reference fastas for individuals with and without Y
 chromosomes. These fastas can then be passed with each
 sample to save subsequent processing time.
--CHROM_STATS This flag will limit XYalign to only analyzing
 provided bam files for depth and mapq across entire
 chromosomes.
--ANALYZE_BAM This flag will limit XYalign to only analyzing the bam
 file for depth, mapq, and (optionally) read balance
 and outputting plots.
--CHARACTERIZE_SEX_CHROMS
 This flag will limit XYalign to the steps required to
 characterize sex chromosome content (i.e., analyzing
 the bam for depth, mapq, and read balance and running
 statistical tests to help infer ploidy)
--REMAPPING This flag will limit XYalign to only the steps
 required to strip reads and remap to masked
 references. If masked references are not provided,
 they will be created.
--STRIP_READS This flag will limit XYalign to only the steps
 required to strip reads from a provided bam file.
--logfile LOGFILE Name of logfile. Will overwrite if exists. Default is
 sample_xyalign.log
--reporting_level {DEBUG,INFO,ERROR,CRITICAL}
 Set level of messages printed to console. Default is
 'INFO'. Choose from (in decreasing amount of
 reporting) DEBUG, INFO, ERROR or CRITICAL
--platypus_path PLATYPUS_PATH
 Path to platypus. Default is 'platypus'. If platypus
 is not directly callable (e.g., '/path/to/platypus' or
 '/path/to/Playpus.py'), then provide path to python as
 well (e.g., '/path/to/python /path/to/platypus'). In
 addition, be sure provided python is version 2. See
 the documentation for more information about setting
 up an anaconda environment.
--bwa_path BWA_PATH Path to bwa. Default is 'bwa'
--samtools_path SAMTOOLS_PATH
 Path to samtools. Default is 'samtools'
--repairsh_path REPAIRSH_PATH
 Path to bbmap's repair.sh script. Default is
 'repair.sh'
--shufflesh_path SHUFFLESH_PATH
 Path to bbmap's shuffle.sh script. Default is
 'shuffle.sh'
--sambamba_path SAMBAMBA_PATH
 Path to sambamba. Default is 'sambamba'
--bedtools_path BEDTOOLS_PATH
 Path to bedtools. Default is 'bedtools'
--platypus_calling {both,none,before,after}
 Platypus calling withing the pipeline (before
 processing, after processing, both, or neither).
 Options: both, none, before, after.
--no_variant_plots Include flag to prevent plotting read balance from VCF
 files.
--no_bam_analysis Include flag to prevent depth/mapq analysis of bam
 file. Used to isolate platypus_calling.
--skip_compatibility_check
 Include flag to prevent check of compatibility between
 input bam and reference fasta
--no_perm_test Include flag to turn off permutation tests.
--no_ks_test Include flag to turn off KS Two Sample tests.
--no_bootstrap Include flag to turn off bootstrap analyses. Requires
 either --y_present, --y_absent, or
 --sex_chrom_calling_threshold if running full
 pipeline.
--variant_site_quality VARIANT_SITE_QUALITY, -vsq VARIANT_SITE_QUALITY
 Consider all SNPs with a site quality (QUAL) greater
 than or equal to this value. Default is 30.
--variant_genotype_quality VARIANT_GENOTYPE_QUALITY, -vgq VARIANT_GENOTYPE_QUALITY
 Consider all SNPs with a sample genotype quality
 greater than or equal to this value. Default is 30.
--variant_depth VARIANT_DEPTH, -vd VARIANT_DEPTH
 Consider all SNPs with a sample depth greater than or
 equal to this value. Default is 4.
--platypus_logfile PLATYPUS_LOGFILE
 Prefix to use for Platypus log files. Will default to
 the sample_id argument provided
--homogenize_read_balance HOMOGENIZE_READ_BALANCE
 If True, read balance values will be transformed by
 subtracting each value from 1. For example, 0.25 and
 0.75 would be treated equivalently. Default is False.
--min_variant_count MIN_VARIANT_COUNT
 Minimum number of variants in a window for the read
 balance of that window to be plotted. Note that this
 does not affect plotting of variant counts. Default is
 1, though we note that many window averages will be
 meaningless at this setting.
--reference_mask [REFERENCE_MASK [REFERENCE_MASK ...]]
 Bed file containing regions to replace with Ns in the
 sex chromosome reference. Examples might include the
 pseudoautosomal regions on the Y to force all
 mapping/calling on those regions of the X chromosome.
 Default is None.
--xx_ref_out_name XX_REF_OUT_NAME
 Desired name for masked output fasta for samples
 WITHOUT a Y chromosome (e.g., XX, XXX, XO, etc.).
 Defaults to 'xyalign_noY.masked.fa'. Will be output in
 the XYalign reference directory.
--xy_ref_out_name XY_REF_OUT_NAME
 Desired name for masked output fasta for samples WITH
 a Y chromosome (e.g., XY, XXY, etc.). Defaults to
 'xyalign_withY.masked.fa'. Will be output in the
 XYalign reference directory.
--xx_ref_out XX_REF_OUT
 Desired path to and name of masked output fasta for
 samples WITHOUT a Y chromosome (e.g., XX, XXX, XO,
 etc.). Overwrites if exists. Use if you would like
 output somewhere other than XYalign reference
 directory. Otherwise, use --xx_ref_name.
--xy_ref_out XY_REF_OUT
 Desired path to and name of masked output fasta for
 samples WITH a Y chromosome (e.g., XY, XXY, etc.).
 Overwrites if exists. Use if you would like output
 somewhere other than XYalign reference directory.
 Otherwise, use --xy_ref_name.
--xx_ref_in XX_REF_IN
 Path to preprocessed reference fasta to be used for
 remapping in X0 or XX samples. Default is None. If
 none, will produce a sample-specific reference for
 remapping.
--xy_ref_in XY_REF_IN
 Path to preprocessed reference fasta to be used for
 remapping in samples containing Y chromosome. Default
 is None. If none, will produce a sample-specific
 reference for remapping.
--bwa_index BWA_INDEX
 If True, index with BWA during PREPARE_REFERENCE. Only
 relevantwhen running the PREPARE_REFERENCE module by
 itself. Default is False.
--read_group_id READ_GROUP_ID
 If read groups are present in a bam file, they are
 used by default in remapping steps. However, if read
 groups are not present in a file, there are two
 options for proceeding. If '--read_group_id None' is
 provided (case sensitive), then no read groups will be
 used in subsequent mapping steps. Otherwise, any other
 string provided to this flag will be used as a read
 group ID. Default is '--read_group_id xyalign'
--bwa_flags BWA_FLAGS
 Provide a string (in quotes, with spaces between
 arguments) for additional flags desired for BWA
 mapping (other than -R and -t). Example: '-M -T 20 -v
 4'. Note that those are spaces between arguments.
--sex_chrom_bam_only This flag skips merging the new sex chromosome bam
 file back into the original bam file (i.e., sex chrom
 swapping). This will output a bam file containing only
 the newly remapped sex chromosomes.
--sex_chrom_calling_threshold SEX_CHROM_CALLING_THRESHOLD
 This is the *maximum* filtered X/Y depth ratio for an
 individual to be considered as having heterogametic
 sex chromsomes (e.g., XY) for the REMAPPING module of
 XYalign. Note here that X and Y chromosomes are simply
 the chromosomes that have been designated as X and Y
 via --x_chromosome and --y_chromosome. Keep in mind
 that the ideal threshold will vary according to sex
 determination mechanism, sequence homology between the
 sex chromosomes, reference genome, sequencing methods,
 etc. See documentation for more detail. Default is
 2.0, which we found to be reasonable for exome, low-
 coverage whole-genome, and high-coverage whole-genome
 human data.
--y_present Overrides sex chr estimation by XYalign and remaps
 with Y present.
--y_absent Overrides sex chr estimation by XY align and remaps
 with Y absent.
--window_size WINDOW_SIZE, -w WINDOW_SIZE
 Window size (integer) for sliding window calculations.
 Default is 50000. Default is None. If set to None,
 will use targets provided using --target_bed.
--target_bed TARGET_BED
 Bed file containing targets to use in sliding window
 analyses instead of a fixed window width. Either this
 or --window_size needs to be set. Default is None,
 which will use window size provided with
 --window_size. If not None, and --window_size is None,
 analyses will use targets in provided file. Must be
 typical bed format, 0-based indexing, with the first
 three columns containing the chromosome name, start
 coordinate, stop coordinate.
--exact_depth Calculate exact depth within windows, else use much
 faster approximation. *Currently exact is not
 implemented*. Default is False.
--whole_genome_threshold
 This flag will calculate the depth filter threshold
 based on all values from across the genome. By
 default, thresholds are calculated per chromosome.
--mapq_cutoff MAPQ_CUTOFF, -mq MAPQ_CUTOFF
 Minimum mean mapq threshold for a window to be
 considered high quality. Default is 20.
--min_depth_filter MIN_DEPTH_FILTER
 Minimum depth threshold for a window to be considered
 high quality. Calculated as mean depth *
 min_depth_filter. So, a min_depth_filter of 0.2 would
 require at least a minimum depth of 2 if the mean
 depth was 10. Default is 0.0 to consider all windows.
--max_depth_filter MAX_DEPTH_FILTER
 Maximum depth threshold for a window to be considered
 high quality. Calculated as mean depth *
 max_depth_filter. So, a max_depth_filter of 4 would
 require depths to be less than or equal to 40 if the
 mean depth was 10. Default is 10000.0 to consider all
 windows.
--num_permutations NUM_PERMUTATIONS
 Number of permutations to use for permutation
 analyses. Default is 10000
--num_bootstraps NUM_BOOTSTRAPS
 Number of bootstrap replicates to use when
 bootstrapping mean depth ratios among chromosomes.
 Default is 10000
--ignore_duplicates Ignore duplicate reads in bam analyses. Default is to
 include duplicates.
--marker_size MARKER_SIZE
 Marker size for genome-wide plots in matplotlib.
 Default is 10.
--marker_transparency MARKER_TRANSPARENCY, -mt MARKER_TRANSPARENCY
 Transparency of markers in genome-wide plots. Alpha in
 matplotlib. Default is 0.5
--coordinate_scale COORDINATE_SCALE
 For genome-wide scatter plots, divide all coordinates
 by this value.Default is 1000000, which will plot
 everything in megabases.
--include_fixed INCLUDE_FIXED
 Default is False, which removes read balances less
 than 0.05 and greater than 0.95 for histogram
 plotting. True will include all values. Extreme values
 removed by default because they often swamp out the
 signal of the rest of the distribution.
--use_counts If True, get counts of reads per chromosome for
 CHROM_STATS, rather than calculating mean depth and
 mapq. Much faster, but provides less information.
 Default is False

Frequently Asked Questions

Does XYalign require X and Y chromosomes?

In principle, no, it doesn’t. The focus on X and Y chromosomes stems from our
initial interest in characterizing technical biases and aneuploidies affecting
variant calling on the sex chromosomes in large human genomic datasets. Hence,
the terminology we use throughout. You can provide the name of any chromosome
or scaffold to --x_chromosome and --y_chromosome, and an arbitrary number of
chromosome/scaffold names to --chromosomes. See Usage Overview for an example of
how this might work. We plan to generalize XYalign in the future to make this
easier.

Will XYalign work with genomes from other organisms?

Yes, but with some caveats. As discussed above, you can provide any chromosome
names to --x_chromosome and --y_chromosome. So, if your organism
has Z and W chromosomes, this might look like --x_chromosome chrZ
and --y_chromosome chrW. However, we advise users to interpret results
cautiously, as XYalign’s default settings for human X and Y chromosomes
are likely inappropriate for many other organisms. This is especially the case
for ZW systems, or reference genomes without sequences for the Y (or equivalent)
chromosome. In addition, XYalign does not currently accept multiple X or Y
scaffolds. We plan to address these phenomena in future releases.

API

	xyalign

	xyalign package

	xyalign.assemble module

	xyalign.bam module

	xyalign.ploidy module

	xyalign.reftools module

	xyalign.utils module

	xyalign.variants module

	xyalign.xyalign module

xyalign

	xyalign package
	Subpackages

	Submodules
	xyalign.assemble module

	xyalign.bam module

	xyalign.ploidy module

	xyalign.reftools module

	xyalign.utils module

	xyalign.variants module

	xyalign.xyalign module

	Module contents

xyalign package

Subpackages

Submodules

	xyalign.assemble module

	xyalign.bam module

	xyalign.ploidy module

	xyalign.reftools module

	xyalign.utils module

	xyalign.variants module

	xyalign.xyalign module

Module contents

xyalign.assemble module

	
xyalign.assemble.bwa_mem_mapping_sambamba(bwa_path, samtools_path, sambamba_path, reference, output_prefix, fastqs, threads, read_group_line, bwa_params, cram=False)

	Maps reads to a reference genome using bwa mem. If output is in bam format,
will sort using sambamba, else will sort with samtools

	Parameters

	bwa_path : str

The path to bwa

samtools_path : str

The path to samtools

sambamba_path : str

The path to sambamba

reference : reftools.RefFasta() object

reftools.RefFasta() object of reference genome (in fasta format)

output_prefix : str

The prefix (including path) to the desired output files

fastqs : list

Fastqs, e.g. [‘sample_1.fastq’, ‘sample_2.fastq’]

threads : int

The number of threads/cpus to use

read_group_line : str

Read group info for bwa to add. If ‘None’, will not add read group.

bwa_params : list

Bwa parameters to be joined into a string and inserted into the command

cram : bool

If True, will output a sorted cram, else a sorted bam. Default is False.

	Returns

	str

Path to output bam file (indexed)

	Raises

	RuntimeError

If fastq or reference files cannot be found

xyalign.bam module

	
class xyalign.bam.BamFile(filepath, samtools='samtools', no_initial_index=False)

	A class for working with external bam files

Attributes

	filepath

	(str) Full path to external bam file.

	samtools

	(str) Full path to samtools. Default = ‘samtools’

	
is_indexed()

	Checks that bam index exists, is not empty, and is newer than bam.

	Returns

	bool

True if bam index exists and is newer than bam, False otherwise.

	
index_bam()

	Indexes a bam using samtools (‘samtools index file.bam’).

	Returns

	bool

True if successful.

	Raises

	RuntimeError

If return code from external call is not 0.

	
get_chrom_length(chrom)

	Extract chromosome length from BAM header.

	Parameters

	chrom : str

The name of the chromosome or scaffold.

	Returns

	length : int

The length (integer) of the chromsome/scaffold

	Raises

	RuntimeError

If chromosome name not present in bam header

	
chromosome_lengths()

	
	Returns

	tuple

chromosome lengths ordered by sequence order in bam header

	
chromosome_names()

	
	Returns

	tuple

chromosome names ordered by sequence order in bam header

	
chromosome_bed(output_file, chromosome_list)

	Takes list of chromosomes and outputs a bed file with the
length of each chromosome on each line
(e.g., chr1 0 247249719).

	Parameters

	output_file : str

Name of (including full path to) desired output file

chromosome_list : list

Chromosome/scaffolds to include

	Returns

	str

output_file

	Raises

	RuntimeError

If chromosome name is not in bam header.

	
check_chrom_in_bam(chromosome_list)

	Checks to see if all chromosomes in chromosome_list are in bam file

	Parameters

	chromosome_list : list

Chromosomes/scaffolds to check

	Returns

	list

List of chromosomes not in bam file

	
sort_bam(sorted_bam, query_name=False)

	Sorts bam file by coordinate (query_name=False) or
query name (query_name=True)

	Parameters

	sorted_bam : str

Full path to (including desired name of) output bam file

query_name : bool

If True, sort by query name (read ID), else sort by coordinate

	Returns

	BamFile() object

BamFile() object of new, sorted bam file

	
extract_regions(regions, new_bam, rg_id=None)

	Extracts regions from a bam file into new bam file.

	Parameters

	regions : list

regions from which reads will be stripped

new_bam : str

Full path to and desired name of output bam file

rg_id : str or None

Path to text file containing read group ids to use when isolating regions.
If None, all reads from regions will be extracted.

	Returns

	BamFile() object

BamFile() object of new bam file (containing extracted regions)

	
extract_read_group(new_bam, rg_id)

	Extracts all reads belonging to a given RG ID from a
bam file into new bam file.

	Parameters

	new_bam : str

Full path to and desired name of output bam file

rg_id : str

Path to text file containing read group ids to use when isolating regions.

	Returns

	BamFile() object

BamFile() object of new bam file (containing extracted regions)

	
strip_reads(repairsh, shufflesh, single, output_directory, output_prefix, regions, repair_xmx, compression, cleanup=True, default_rg='None')

	Strips reads from a bam or cram file in provided regions and outputs
sorted fastqs containing reads, one set of fastq files per read group.

	Parameters

	repairsh : str

Path to repair.sh (from BBmap)

shufflesh : str

Path to shuffle.sh (from BBmap)

single : bool

If true output single-end fastq, otherwise output paired-end fastqs

output_directory : str

The directory for ALL output (including temporary files)

output_prefix : str

The name (without path) to use for prefix to output fastqs

regions : list

regions from which reads will be stripped

repair_xmx : str

If “None”, repair.sh will allocate its own memory. Otherwise value
will be provided in the form of -Xmx4g, where 4g is the value provided
as repair_xmx

compression : int

Desired compression level (0-9) for output fastqs. If 0, fastqs
will be uncompressed.

cleanup : bool

If true, will clean up temporary files.

default_rg : str

If “None”, no default read group will be created. Otherwise, default
read group will be string provided. This read group will consist
exclusively of an ID.

	Returns

	list

A two-item list containing the path to a text file pairing read group
names with associated output fastqs, and a text file containing a
list of @RG lines associated with each read group

	
analyze_bam(chrom, duplicates, exact, window_size, target_file=None)

	Analyze BAM (or CRAM) file for depth and mapping quality across genomic
windows.

	Parameters

	chrom : str

The name of the chromosome to analyze

duplicates : bool

If True, duplicates included in analyses.

exact : bool

If True, mean depth is calculated exactly within each window.
If False, an accurate (and much faster) approximation is used

window_size

If int, the window size to use for sliding window analyses, if None
intervals from target_file

target_file : str

Path to bed_file containing regions to analyze instead of
windows of a fixed size. Will only be engaged if window_size is None

	Returns

	pandas dataframe

pandas data frame with the columns: “chrom”, “start”, “stop”,
“depth”, “mapq”

	
chrom_stats(chrom, duplicates)

	Analyze BAM (or CRAM) file for depth and mapping quality across a
single chromosome.

	Parameters

	chrom : str

The name of the chromosome to analyze

duplicates : bool

If True, duplicates included in analyses.

	Returns

	tuple

(mean_depth, mean_mapq)

	
chrom_counts()

	Get read counts per chrom from a bamfile

	
platypus_caller(platypus_path, log_path, ref, chroms, cpus, output_file, regions_file=None)

	Uses platypus to make variant calls on provided bam file

	Parameters

	platypus_path : str

Path to platypus

log_path : str

Path to and name of desired log file for platypus

ref : str

Path to reference sequence

chroms : list

Chromosomes to call variants on, e.g., [“chrX”, “chrY”, “chr19”]

cpus : int

Number of threads/cores to use

output_file : path

Path to and name of the output vcf

regions_file : {str, None}

If not None, must be path to bed file containing regions to call variants
in. If None, calls in call regions of provided chromosomes. Default =
None.

	Returns

	int

Exit code of the platypus call

	
xyalign.bam.switch_sex_chromosomes_sambamba(samtools_path, sambamba_path, bam_orig, bam_new, sex_chroms, output_directory, output_prefix, threads, pg_header_dict, cram=False)

	Removes sex chromosomes from original bam and merges in remmapped
sex chromosomes, while retaining the original bam header (and adding new
@PG line)

	Parameters

	samtools_path : str

The path to samtools

sambamba_path :

The path to sambamba

bam_orig : str

The path to the original full bam file

bam_new : str

The path to the bam file containing the remapped sex chromosomes

sex_chroms : list

Sex chromosomes (to be removed from bam_orig)

output_directory : str

The path to directory where all files (inc. temp) will be output

output_prefix : str

The name (without path) to use as prefix for all files

threads : int

The number of threads/cpus to use

pg_header_dict : dict

	dictionary with information to be included in the new @PG line

	
	
	must contain:

	Key = ‘CL’, value = list of command line values
Key = ‘ID’, value = string of program ID

	
	optional:

	Key = ‘VN’, value = string of program version

cram : bool

If True, will treat input as cram files and output cram files.
Otherwise, will treat input as bam. Defaule is False. True is currently
unsupported.

	Returns

	str

Bam or cram file path with new sex chromosomes, but all others intact.

	Raises

	RuntimeError

If cram is not False.

	
xyalign.bam.samtools_merge(samtools_path, bam_list, output_prefix, threads)

	Merges bam files using samtools.

	Parameters

	samtools_path : str

The path to samtools

bam_list : list

Bam files to be merged. Merging order will match order of this list.

output_prefix : str

	Returns

	str

path to merged bam

xyalign.ploidy module

	
xyalign.ploidy.permutation_test_chromosomes(data_frame, first_chrom, second_chrom, chrom_column, value_column, num_perms, output_file=None)

	Runs a permutation test comparing mean values of two chromosomes.

	Parameters

	data_frame : pandas dataframe

first_chrom : str

The name of the first chromosome in comparison

second_chrom : str

The name of the second chromosome in comparison

chrom_column : str

The name of the column containing chromosome names

value_column : str

The name of the column containing the value of interest

num_perms : int

The number of permutations to use

output_file : {str, None}

If not None, will print results to this file

	Returns

	tuple

(mean of first chrom, mean of second chrom, p-value)

	
xyalign.ploidy.ks_two_sample(data_frame, first_chrom, second_chrom, chrom_column, value_column, output_file=None)

	Runs a Two-sample Kolmogorov-Smirnov test

	Parameters

	data_frame : pandas dataframe

first_chrom : str

The name of the first chromosome in comparison

second_chrom : str

The name of the second chromosome in comparison

chrom_column : str

The name of the column containing chromosome names

value_column : str

The name of the column containing the value of interest

output_file : {str, None}

If not None, will print results to this file.

	Returns

	tuple

(ks_statistic, ks_pvalue)

	
xyalign.ploidy.bootstrap(data_frame, first_chrom, second_chrom, chrom_column, value_column, num_reps, output_file=None)

	Bootstraps the 95 percent confidence interval of the mean ratio of
measure for two chromosomes (chrom1 / chrom2).

	Parameters

	data_frame : pandas dataframe

first_chrom : str

The name of the first chromosome in comparison

second_chrom : str

The name of the second chromosome in comparison

chrom_column : str

The name of the column containing chromosome names

value_column : str

The name of the column containing the value of interest

num_reps : int

The number of bootstrap replicates to use

output_file : {str, None}

If not None, will print results to this file.

	Returns

	tuple

(mean ratio, 0.025 percentile, 0.975 percentile)

xyalign.reftools module

	
class xyalign.reftools.RefFasta(filepath, samtools='samtools', bwa='bwa', no_initial_index=False)

	A class for working with external reference fasta files

Attributes

	filepath

	(str) Full path to external bam file.

	samtools

	(str) Full path to samtools. Default = ‘samtools’

	bwa

	(str) Full path to bwa. Default = ‘bwa’

	
is_faidxed()

	Checks that fai index exists, is not empty and is newer than reference.

	Returns

	bool

True if fai index exists and is newer than fasta, False otherwise.

	
index_fai()

	Create fai index for reference using samtools (‘samtools faidx ref.fa’)

	Returns

	bool

True if successful

	Raises

	RuntimeError

If return code from external call is not 0

	
index_bwa()

	Index reference using bwa

	Returns

	bool

True if successful

	Raises

	RuntimeError

If return code from external call is not 0

	
check_bwa_index()

	Checks to see if bwa indices are newer than fasta.

	Returns

	bool

True if indices exist and are newer than fasta. False otherwise.

	
conditional_index_bwa(bwa='bwa')

	Indexes if indices are the same age or older than the fasta.
Use RefFasta.index_bwa() to force indexing.

	Parameters

	bwa : str

Path to bwa program (default is ‘bwa’)

	
check_seq_dict()

	Checks that sequence dictionary exists, is not empty and
is newer than reference.

	Returns

	bool

True if seq dict exists and is newer than fasta, False otherwise.

	
seq_dict(out_dict=None)

	Create sequence dictionary .dict file using samtools

	Parameters

	out_dict : str

The desired file name for the sequence dictionary -
defaults to adding ‘.dict’ to the fasta name

	Returns

	bool

True if exit code of external call is 0.

	Raises

	RuntimeError

If external call exit code is not 0.

	
conditional_seq_dict()

	Creates sequence dictionary if .dict the same age or older than the fasta,
or doesn’t exist.

Use RefFasta.seq_dict() to force creation.

	
mask_reference(bed_mask, output_fasta)

	Creates a new masked references by hardmasking regions included
in the bed_mask

	Parameters

	bed_mask : str

Bed file of regions to mask (as N) in the new reference

output_fasta : str

The full path to and filename of the output fasta

	Returns

	str

Path to new (indexed and masked) fasta

	
isolate_chroms(new_ref_prefix, chroms, bed_mask=None)

	Takes a reference fasta file and a list of chromosomes to include
and outputs a new, indexed (and optionally masked) reference fasta.

	Parameters

	new_ref_prefix : str

The desired path to and prefix of the output files

chroms : list

Chromosomes to include in the output fasta

bed_mask : str

Bed file of regions to mask (as N) in the new reference

	Returns

	str

Path to new, indexed (optionally masked) fasta

	
get_chrom_length(chrom)

	Extract chromosome length from fasta.

	Parameters

	chrom : str

The name of the chromosome or scaffold.

	Returns

	length : int

The length (integer) of the chromsome/scaffold

	Raises

	RuntimeError

If chromosome name not present in bam header

	
chromosome_bed(output_file, chromosome_list)

	Takes list of chromosomes and outputs a bed file with the
length of each chromosome on each line
(e.g., chr1 0 247249719).

	Parameters

	output_file : str

Name of (including full path to) desired output file

chromosome_list : list

Chromosome/scaffolds to include

	Returns

	str

output_file

	Raises

	RuntimeError

If chromosome name is not in fasta.

	
chromosome_lengths()

	
	Returns

	tuple

Chromosome lengths ordered by sequence order in fasta

	
chromosome_names()

	
	Returns

	tuple

Chromosome names ordered by sequence order in fasta

xyalign.utils module

	
xyalign.utils.validate_external_prog(prog_path, prog_name)

	Checks to see if external program can be called using provided path

	Parameters

	prog_path: path to call program

prog_name: name of program

	Returns

	int

0

	
xyalign.utils.validate_dir(parent_dir, dir_name)

	Checks if directory exists and if not, creates it.

	Parameters

	parent_dir : Parent directory name

dir_name : Name of the new directory

	Returns

	bool

whether the directory existed

	
xyalign.utils.check_bam_fasta_compatibility(bam_object, fasta_object)

	Checks to see if bam and fasta sequence names and lengths are
equivalent (i.e., if it is likely that the bam file was generated
using the fasta in question).

	Parameters

	bam_object : BamFile() object

fasta_object: RefFasta() object

	Returns

	bool

True if sequence names and lengths match. False otherwise.

	
xyalign.utils.check_compatibility_bam_list(bam_obj_list)

	Checks to see if bam sequence names and lengths are
equivalent (i.e., if it is likely that the bam files were generated
using the same reference genome).

	Parameters

	bam_obj_list : list

List of bam.BamFile() objects

	Returns

	bool

True if sequence names and lengths match. False otherwise.

	
xyalign.utils.merge_bed_files(output_file, *bed_files)

	This function simply takes an output_file (full path to desired output file)
and an arbitrary number of external bed files (including full path),
and merges the bed files into the output_file

	Parameters

	output_file : str

Full path to and name of desired output bed file

*bed_files

Variable length argument list of external bed files (include full path)

	Returns

	str

path to output_file

	
xyalign.utils.make_region_lists_genome_filters(depthAndMapqDf, mapqCutoff, min_depth, max_depth)

	Filters a pandas dataframe for mapq and depth based on using all values
from across the entire genome

	Parameters

	depthAndMapqDf : pandas dataframe

Must have ‘depth’ and ‘mapq’ columns

mapqCutoff : int

The minimum mapq for a window to be considered high quality

min_depth : float

Fraction of mean to set as minimum depth

max_depth : float

Multiple of mean to set as maximum depth

	Returns

	tuple

(passing dataframe, failing dataframe)

	
xyalign.utils.make_region_lists_chromosome_filters(depthAndMapqDf, mapqCutoff, min_depth, max_depth)

	Filters a pandas dataframe for mapq and depth based on thresholds calculated
per chromosome

	Parameters

	depthAndMapqDf : pandas dataframe

Must have ‘depth’ and ‘mapq’ columns

mapqCutoff : int

The minimum mapq for a window to be considered high quality

min_depth : float

Fraction of mean to set as minimum depth

max_depth : float

Multiple of mean to set as maximum depth

	Returns

	tuple

(passing dataframe, failing dataframe)

	
xyalign.utils.output_bed(outBed, *regionDfs)

	Concatenate and merges dataframes into an output bed file

	Parameters

	outBed : str

The full path to and name of the output bed file

*regionDfs

Variable length list of dataframes to be included

	Returns

	int

0

	
xyalign.utils.output_bed_no_merge(outBed, *regionDfs)

	Concatenate dataframes into an output bed file. This will preserve all
columns after the first three as well.

	Parameters

	outBed : str

The full path to and name of the output bed file

*regionDfs

Variable length list of dataframes to be included

	Returns

	int

0

	
xyalign.utils.chromosome_wide_plot(chrom, positions, y_value, measure_name, sampleID, output_prefix, MarkerSize, MarkerAlpha, Xlim, Ylim, x_scale=1000000)

	Plots values across a chromosome, where the x axis is the position along the
chromosome and the Y axis is the value of the measure of interest.

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Genomic coordinates

y_value : numpy array

The values of the measure of interest

measure_name : str

The name of the measure of interest (y axis title)

sampleID : str

The name of the sample

output_prefix : str

Full path to and prefix of desired output plot

MarkerSize : float

Size in points^2

MarkerAlpha : float

Transparency (0 to 1)

Xlim : float

Maximum X value

Ylim : float

Maximum Y value

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

	Returns

	int

0

	
xyalign.utils.hist_array(chrom, value_array, measure_name, sampleID, output_prefix)

	Plots a histogram of an array of values of interest. Intended for mapq and
depth, but generalizeable. Separate function from variants.hist_read_balance
because that function eliminates fixed variants, while this function will
plot all values.

	Parameters

	chrom : str

Name of the chromosome

value_array : numpy array

Read balance values

measure_name : str

The name of the measure of interest (y axis title)

sampleID : str

Sample name or id to include in the plot title

output_prefix : str

Desired prefix (including full path) of the output files

	Returns

	int

0 if plotting successful, 1 otherwise.

	
xyalign.utils.plot_depth_mapq(window_df, output_prefix, sampleID, chrom_length, MarkerSize, MarkerAlpha, x_scale=1000000)

	Creates histograms and genome-wide plots of various metrics.

	Parameters

	window_df : pandas dataframe

Columns must include chrom, start, depth, and mapq (at least)

output_prefix : str

Path and prefix of output files to create

sampleID : str

Sample ID

chrom_length: int

Length of chromosome

x_scale : int

Divide all x values (including Xlim) by this value for chromosome_wide_plot.
Default is 1000000 (1MB)

	Returns

	int

0

	
xyalign.utils.before_after_plot(chrom, positions, values_before, values_after, measure_name, sampleID, output_prefix, MarkerSize, MarkerAlpha, Xlim, YMin='auto', YMax='auto', x_scale=1000000, Color='black')

	Plots difference between before/after values (after minus before) across
a chromosome.

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Genomic coordinates

values_before : numpy array

The values of the measure of interest in the “before” condidtion

values_after : numpy array

The values of the measure of interest in the “after” condidtion

measure_name : str

The name of the measure of interest (for y-axis title)

sampleID : str

The name of the sample

output_prefix : str

Full path to and prefix of desired output plot

MarkerSize : float

Size in points^2

MarkerAlpha : float

Transparency (0 to 1)

Xlim : float

Maximum X value

YMin : str, int, or float

If “auto”, will allow matplotlib to automatically determine limit. Otherwise,
will set the y axis minimum to the value provided (int or float)

YMax : str, int, or float

If “auto”, will allow matplotlib to automatically determine limit. Otherwise,
will set the y axis maximum to the value provided (int or float)

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

Color : str

Color to use for points. See matplotlib documentation for acceptable options

	Returns

	int

0 if plotting successful, 1 otherwise

xyalign.variants module

	
class xyalign.variants.VCFFile(filepath, bgzip='bgzip', tabix='tabix', no_initial_compress=False)

	A class for working with external vcf files.

Attributes

	filepath

	(str) Full path to external vcf file

	bgzip

	(str) Full path to bgzip. Default = ‘bgzip’

	tabix

	(str) Full path to tabix. Default = “tabix”

	
is_bgzipped()

	Checks to see if vcf file is gzipped, simply by looking for a .gz or
.bgz ending.
If .gz or .bgz ending exists, assumes file is compressed using bgzip.

	Returns

	bool

True if ends in .gz, False otherwise

	
compress_vcf()

	Compresses vcf file using bgzip.

	Returns

	bool

True if successful

	Raises

	RuntimeError

If return code from external call is not 0

	
index_vcf()

	Indexes vcf file using tabix. If file does not end in .gz, will
compress with bgzip (by calling self.compress_vcf).

Note: Files MUST be compressed using bgzip.

	Returns

	bool

True if successful.

	Raises

	RuntimeError

If return code from external call is not 0.

	
parse_platypus_VCF(site_qual, genotype_qual, depth, chrom)

	Parse vcf generated by Platypus to grab read balance. Note that this
is hard-coded to Platypus (version 0.8.1) and will not generalize to vcfs
generated with other programs (and, potentially, other versions of Platypus)

	Parameters

	site_qual : int

Minimum (PHRED) site quality at which sites should be included

genotype_qual : int

Minimum (PHRED) genotype quality at which sites should be included

depth : int

Minimum depth at which sites should be included

chrom : str

Name of the chromosome to include

	Returns

	tuple

	five corresponding arrays of the same length:

	(position across the chromosome, site quality, read balance,
genotype quality, and depth)

	
plot_variants_per_chrom(chrom_list, sampleID, output_prefix, site_qual, genotype_qual, depth, MarkerSize, MarkerAlpha, bamfile_obj, variant_caller, homogenize, dataframe_out, min_count, window_size, x_scale=1000000, target_file=None, include_fixed=False)

	Parses a vcf file and plots read balance in separate plots
for each chromosome in the input list

	Parameters

	chrom_list : list

Chromosomes to include

sampleID : str

Sample ID (for plot titles)

output_prefix : str

Full path to and prefix of desired output plots

site_qual : int

Minimum (PHRED) site quality at which sites should be included

genotype_qual : int

Minimum (PHRED) genotype quality at which sites should be included

depth : int

Minimum depth at which sites should be included

MarkerSize : float

Size of markers (matplotlib sizes) to use in the figure

MarkerAlpha : float

Transparency (matplotlib values, 0 to 1) of markers

bamfile_obj : BamFile() object

Used to get chromosome lengths only

variant_caller : str

Variant caller used to generate vcf - currently only “platypus” supported

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

dataframe_out : str

Full path of file to write pandas dataframe to. Will overwire if exists

min_count : int

Minimum number of variants to include a window for plotting.

window_size

If int, the window size to use for sliding window analyses, if None
intervals from target_file

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

target_file : str

Path to bed_file containing regions to analyze instead of
windows of a fixed size. Will only be engaged if window_size is None

include_fixed : bool

If False, only plots histogram for values between 0.05 and 1.0. If
True, plots histogram of all variants.

	Returns

	int

0 if variants to analyze; 1 if no variants to analyze on any chromosome

	
xyalign.variants.read_balance_per_window(chrom, positions, readBalance, sampleID, homogenize, chr_len, window_size, target_file=None)

	Calculates mean read balance per genomic window (defined by size or an
external target bed file) for a given chromosome. Takes as input an array
of positions and an array of read balances - the order of which must
correspond exactly. In addition, the positions are expected to ALL BE ON
THE SAME CHROMOSOME and be in numerically sorted order (i.e., the output
of parse_platypus_VCF())

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Positions along the chromosome (same length as readBalance)

readBalance : numpy array

Read balance corresponding with the positions in the positions array

sampleID : str

Sample name or id to include in the plot title

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

chr_len : int

Length of chromosome. Ignored if target_file is provided.

window_size

If int, the window size to use for sliding window analyses, if None
intervals from target_file

target_file : str

Path to bed file containing regions to analyze instead of
windows of a fixed size. Will only be engaged if window_size is None

	Returns

	pandas dataframe

With columns: “chrom”, “start”, “stop”, “balance”, and “count”

	
xyalign.variants.plot_read_balance(chrom, positions, readBalance, sampleID, output_prefix, MarkerSize, MarkerAlpha, homogenize, chrom_len, x_scale=1000000)

	Plots read balance at each SNP along a chromosome

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Positions along the chromosome (same length as readBalance)

readBalance : numpy array

Read balance corresponding with the positions in the positions array

sampleID : str

Sample name or id to include in the plot title

output_prefix : str

Desired prefix (including full path) of the output files

MarkerSize : float

Size of markers (matplotlib sizes) to use in the figure

MarkerAlpha : float

Transparency (matplotlib values) of markers for the figure

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

chrom_len : int

Length of chromosome

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

	Returns

	int

0

	
xyalign.variants.hist_read_balance(chrom, readBalance, sampleID, homogenize, output_prefix, include_fixed=False)

	Plots a histogram of read balance values between 0.05 and 1.0 (non-incusive)

	Parameters

	chrom : str

Name of the chromosome

readBalance : list or numpy array

Read balance values

sampleID : str

Sample name or id to include in the plot title

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

output_prefix : str

Desired prefix (including full path) of the output files

include_fixed : bool

If False, only plots histogram for values between 0.05 and 1.0. If
True, plots histogram of all variants.

	Returns

	int

0 if plotting successful, 1 otherwise.

xyalign.xyalign module

	
xyalign.xyalign.parse_args()

	Parse command-line arguments

	Returns

	Parser argument namespace

	
xyalign.xyalign.ref_prep(ref_obj, ref_mask, ref_dir, xx, xy, y_chromosome, samtools_path, bwa_path, bwa_index)

	Reference prep part of XYalign pipeline.

	Creates two reference fasta files. Both will include masks provied with

ref_mask. One will additionally have the entire Y chromosome
hard masked.

	Indexes (.fai, .dict, and optionally bwa indices) both new references

	Parameters

	ref_obj : RefFasta() object

A reftools.RefFasta() object of a fasta reference file to be processed

ref_mask : list or None

List of files to use to hard-mask references. None will ignore masking.

ref_dir : str

Path to output directory

xx : str

Path to XX output reference

xy : str

Path to XY output reference

y_chromosome : str

Name of Y chromosome in fasta

samtools_path : str

The path to samtools (i.e, “samtools” if in path)

bwa_path : str

The path to bwa (i.e, “bwa” if in path)

bwa_index : bool

If True, create bwa indices. Don’t if False.

	Returns

	tuple

Paths to two masked references (y_masked, y_unmasked)

	
xyalign.xyalign.chrom_stats(bam_obj_list, chrom_list, use_counts)

	Runs chrom stats module.

Calculates mean depth and mapq across entire scaffolds for a list of bam
files

	Returns

	tuple

Tuple containing two dictionaries with results for
depth and mapq, respectively. Or, if use_counts is True, returns a
tuple containing the count dictionary and None.

	
xyalign.xyalign.bam_analysis(input_bam_obj, platypus_calling, platypus_path, vcf_log, ref_obj, input_chroms, cpus, out_vcf, no_variant_plots, window_size, target_bed, sample_id, readbalance_prefix, variant_site_quality, variant_genotype_quality, variant_depth, marker_size, marker_transparency, homogenize_read_balance, data_frame_readbalance, min_variant_count, no_bam_analysis, ignore_duplicates, exact_depth, whole_genome_threshold, mapq_cutoff, min_depth_filter, max_depth_filter, depth_mapq_prefix, bam_data_frame, output_bed_high, output_bed_low, use_bed_for_platypus, coordinate_scale, fixed)

	Runs bam analyis part of XYalign pipeline on bam file.

	(Optionally) calls variants using Platypus

	(Optionally) parses and filters Platypus vcf, and plots read balance

	
	(Optionally) Calculates window based metrics from the bam file:

	depth and mapq

	(optionally) Plots window-based metrics

	Outputs two bed files: high quality windows, and low quality windows.

	Parameters

	input_bam_obj : bam.BamFile() object

platypus_calling : bool

If True, will call and analyze variants

platypus_path : str

Command to call platypus (e.g, “platypus”)

vcf_log : str

Path to file for platypus log

ref_obj : reftools.RefFasta() object

input_chroms : list

Chromosomes to analyze

cpus : int

Number of threads/cpus

out_vcf : str

Output vcf path/name

no_variant_plots : bool

If True, will not plot read balance

window_size : int or None

Window size for sliding window analyses (both bam and vcf). If None,
will use regions in target_bed

target_bed : str or None

Path to bed file containing targets to use in sliding window analyses

sample_id : str

readbalance_prefix : str

Prefix, including full path, to use for output files for
readbalance analyses

variant_site_quality : int

Minimum site quality (PHRED) for a site to be included in
readbalance analyses

variant_genotype_quality : int

Minimum genotype quality for a site to be included in read balance analyses

variant_depth : int

Minimum depth for a site to be included in read balance analyses

marker_size : float

Marker size for plotting genome scatter plots

marker_transparency: float

Value to use for marker transparency in genome scatter plots

homogenize_read_balance : bool

If true, will subtract values less than 0.5 from 1. I.e., 0.25 and 0.75
would be treated equivalently

data_frame_readbalance: str

Path of output file for full read balance dataframe

min_variant_count : int

Minimum number of variants in a given window for the window to be
plotted in window-based read balance analyses

no_bam_analysis : bool

If True, no bam analyses will take place

ignore_duplicates : bool

If True, duplicates excluded from bam analyses

exact_depth : bool

If True, exact depth calculated in each window. Else, a much faster
approximation will be used

whole_genome_threshold : bool

If True, values for depth filters will be calculated using mean from
across all chromosomes included in analyses. Else, mean will be taken
per chromosome

min_depth_filter : float

Minimum depth threshold for a window to be considered high. Calculated
as mean depth * min_depth_filter.

max_depth_filter : float

Maximum depth threshold for a window to be considered high. Calculated
as mean depth * min_depth_filter.

depth_mapq_prefix : str

Prefix, including full path, to be used for files output from depth and
mapq analyses

bam_data_frame : str

Full path to output file for dataframe containing all data from bam
analyses

output_bed_high : str

Full path to output bed containing high quality (i.e., passing
filters) windows

output_bed_low : str

Full path to output bed containing low quality (i.e., failing
filters) windows

use_bed_for_platypus : bool

If True, use output_bed_high as regions for Platypus calling

coordinate_scale : int

Divide all coordinates by this value for plotting. In most cases, 1000000
will be ideal for eukaryotic genomes.

fixed : bool

If False, only plots histogram for values between 0.05 and 1.0
(non-inclusive). If True, plots histogram of all variants.

	Returns

	tuple

(list of pandas dataframes with passing windows,
list of pandas dataframes with failing windows)

	
xyalign.xyalign.ploidy_analysis(passing_df, failing_df, no_perm_test, no_ks_test, no_bootstrap, input_chroms, x_chromosome, y_chromosome, results_dir, num_permutations, num_bootstraps, sample_id)

	Runs the ploidy analysis part of XYalign.

	Runs permutation test to systematically compare means between

every possible pair of chromosomes

	Runs K-S two sample test to systematically compare distributions between

every possible pair of chromosomes

	Bootstraps the mean depth ratio for every possible pair of chromosomes

	Parameters

	passing_df : list

Passing pandas dataframes, one per chromosome

failing_df : list

Failing pandas dataframes, one per chromosome

no_perm_test : bool

If False, permutation test will be run

no_ks_test : bool

If False, KS test will be run

no_bootstrap : bool

If False, bootstrap analysis will be run

input_chroms : list

Chromosomes/scaffolds to analyze

x_chromosome : list

X-linked scaffolds

y_chromosome : list

Y-likned scaffolds

results_dir : str

Full path to directory to output results

num_permutations : int

Number of permutations

num_bootstraps : int

Number of bootstrap replicates

sample_id : str

	Returns

	dictionary

Results for each test. Keys: perm, ks, boot.

	
xyalign.xyalign.remapping(input_bam_obj, y_pres, masked_references, samtools_path, sambamba_path, repairsh_path, shufflesh_path, bwa_path, bwa_flags, single_end, bam_dir, fastq_dir, sample_id, x_chromosome, y_chromosome, cpus, xmx, fastq_compression, cleanup, read_group_id)

	Runs remapping steps of XYalign.

	Strips, sorts, and re-pair reads from the sex chromosomes (collecting read

group information)

	Maps (with sorting) reads (with read group information) to appropriate

reference based on presence (or not) of Y chromosome

	Merge bam files (if more than one read group)

	Parameters

	input_bam_obj : bam.BamFile() object

y_pres : bool

True if Y chromosome present in individual

masked_references : tuple

Masked reference objects (xx, xy)

samtools_path : str

Path/command to call samtools

sambamba_path : str

Path/command to call sambamba

repairsh_path : str

Path/command to call repair.sh

shufflesh_path : str

Path/command to call shuffle.sh

bwa_path : str

Path/command to call bwa

bwa_flags : str

Flags to use for bwa mapping

single_end : bool

If True, reads treated as single end

bam_dir : str

Path to output directory for bam files

fastq_dir : str

Path to output directory for fastq files

sample_id : str

x_chromosome : list

X-linked scaffolds

y_chromosome : list

Y-linked scaffolds

cpus : int

Number of threads/cpus

xmx : str

Value to be combined with -Xmx for java programs (i.e., 4g would
result in -Xmx4g)

fastq_compression : int

Compression level for fastq files. 0 leaves fastq files uncompressed.
Otherwise values should be between 1 and 9 (inclusive), with
larger values indicating more compression

cleanup : bool

If True, will delete temporary files

read_group_id : str

ID to use to add read group information

	Returns

	str

Path to bam containing remapped sex chromsomes

	
xyalign.xyalign.swap_sex_chroms(input_bam_obj, new_bam_obj, samtools_path, sambamba_path, x_chromosome, y_chromosome, bam_dir, sample_id, cpus, xyalign_params)

	Switches sex chromosmes from new_bam_file with those in original bam file

	Parameters

	input_bam_obj : bam.BamFile() object

Original input bam file object

new_bam_obj : bam.BamFile() object

Bam file object containing newly mapped sex chromosomes (to insert)

samtools_path : str

Path/command to call samtools

sambamba_path : str

Path/command to call sambamba

x_chromosome : list

X-linked scaffolds

y_chromosome : str

Y-linked scaffolds

bam_dir : str

Path to bam output directory

sample_id : str

cpus : int

Number of threads/cpus

xyalign_params : dict

Dictionary of xyalign_params to add to bam header

	Returns

	str

Path to new bam file containing original autosomes and new sex chromosomes

	
xyalign.xyalign.main()

	

xyalign package

Subpackages

Submodules

	xyalign.assemble module

	xyalign.bam module

	xyalign.ploidy module

	xyalign.reftools module

	xyalign.utils module

	xyalign.variants module

	xyalign.xyalign module

Module contents

xyalign.assemble module

	
xyalign.assemble.bwa_mem_mapping_sambamba(bwa_path, samtools_path, sambamba_path, reference, output_prefix, fastqs, threads, read_group_line, bwa_params, cram=False)

	Maps reads to a reference genome using bwa mem. If output is in bam format,
will sort using sambamba, else will sort with samtools

	Parameters

	bwa_path : str

The path to bwa

samtools_path : str

The path to samtools

sambamba_path : str

The path to sambamba

reference : reftools.RefFasta() object

reftools.RefFasta() object of reference genome (in fasta format)

output_prefix : str

The prefix (including path) to the desired output files

fastqs : list

Fastqs, e.g. [‘sample_1.fastq’, ‘sample_2.fastq’]

threads : int

The number of threads/cpus to use

read_group_line : str

Read group info for bwa to add. If ‘None’, will not add read group.

bwa_params : list

Bwa parameters to be joined into a string and inserted into the command

cram : bool

If True, will output a sorted cram, else a sorted bam. Default is False.

	Returns

	str

Path to output bam file (indexed)

	Raises

	RuntimeError

If fastq or reference files cannot be found

xyalign.bam module

	
class xyalign.bam.BamFile(filepath, samtools='samtools', no_initial_index=False)

	A class for working with external bam files

Attributes

	filepath

	(str) Full path to external bam file.

	samtools

	(str) Full path to samtools. Default = ‘samtools’

	
is_indexed()

	Checks that bam index exists, is not empty, and is newer than bam.

	Returns

	bool

True if bam index exists and is newer than bam, False otherwise.

	
index_bam()

	Indexes a bam using samtools (‘samtools index file.bam’).

	Returns

	bool

True if successful.

	Raises

	RuntimeError

If return code from external call is not 0.

	
get_chrom_length(chrom)

	Extract chromosome length from BAM header.

	Parameters

	chrom : str

The name of the chromosome or scaffold.

	Returns

	length : int

The length (integer) of the chromsome/scaffold

	Raises

	RuntimeError

If chromosome name not present in bam header

	
chromosome_lengths()

	
	Returns

	tuple

chromosome lengths ordered by sequence order in bam header

	
chromosome_names()

	
	Returns

	tuple

chromosome names ordered by sequence order in bam header

	
chromosome_bed(output_file, chromosome_list)

	Takes list of chromosomes and outputs a bed file with the
length of each chromosome on each line
(e.g., chr1 0 247249719).

	Parameters

	output_file : str

Name of (including full path to) desired output file

chromosome_list : list

Chromosome/scaffolds to include

	Returns

	str

output_file

	Raises

	RuntimeError

If chromosome name is not in bam header.

	
check_chrom_in_bam(chromosome_list)

	Checks to see if all chromosomes in chromosome_list are in bam file

	Parameters

	chromosome_list : list

Chromosomes/scaffolds to check

	Returns

	list

List of chromosomes not in bam file

	
sort_bam(sorted_bam, query_name=False)

	Sorts bam file by coordinate (query_name=False) or
query name (query_name=True)

	Parameters

	sorted_bam : str

Full path to (including desired name of) output bam file

query_name : bool

If True, sort by query name (read ID), else sort by coordinate

	Returns

	BamFile() object

BamFile() object of new, sorted bam file

	
extract_regions(regions, new_bam, rg_id=None)

	Extracts regions from a bam file into new bam file.

	Parameters

	regions : list

regions from which reads will be stripped

new_bam : str

Full path to and desired name of output bam file

rg_id : str or None

Path to text file containing read group ids to use when isolating regions.
If None, all reads from regions will be extracted.

	Returns

	BamFile() object

BamFile() object of new bam file (containing extracted regions)

	
extract_read_group(new_bam, rg_id)

	Extracts all reads belonging to a given RG ID from a
bam file into new bam file.

	Parameters

	new_bam : str

Full path to and desired name of output bam file

rg_id : str

Path to text file containing read group ids to use when isolating regions.

	Returns

	BamFile() object

BamFile() object of new bam file (containing extracted regions)

	
strip_reads(repairsh, shufflesh, single, output_directory, output_prefix, regions, repair_xmx, compression, cleanup=True, default_rg='None')

	Strips reads from a bam or cram file in provided regions and outputs
sorted fastqs containing reads, one set of fastq files per read group.

	Parameters

	repairsh : str

Path to repair.sh (from BBmap)

shufflesh : str

Path to shuffle.sh (from BBmap)

single : bool

If true output single-end fastq, otherwise output paired-end fastqs

output_directory : str

The directory for ALL output (including temporary files)

output_prefix : str

The name (without path) to use for prefix to output fastqs

regions : list

regions from which reads will be stripped

repair_xmx : str

If “None”, repair.sh will allocate its own memory. Otherwise value
will be provided in the form of -Xmx4g, where 4g is the value provided
as repair_xmx

compression : int

Desired compression level (0-9) for output fastqs. If 0, fastqs
will be uncompressed.

cleanup : bool

If true, will clean up temporary files.

default_rg : str

If “None”, no default read group will be created. Otherwise, default
read group will be string provided. This read group will consist
exclusively of an ID.

	Returns

	list

A two-item list containing the path to a text file pairing read group
names with associated output fastqs, and a text file containing a
list of @RG lines associated with each read group

	
analyze_bam(chrom, duplicates, exact, window_size, target_file=None)

	Analyze BAM (or CRAM) file for depth and mapping quality across genomic
windows.

	Parameters

	chrom : str

The name of the chromosome to analyze

duplicates : bool

If True, duplicates included in analyses.

exact : bool

If True, mean depth is calculated exactly within each window.
If False, an accurate (and much faster) approximation is used

window_size

If int, the window size to use for sliding window analyses, if None
intervals from target_file

target_file : str

Path to bed_file containing regions to analyze instead of
windows of a fixed size. Will only be engaged if window_size is None

	Returns

	pandas dataframe

pandas data frame with the columns: “chrom”, “start”, “stop”,
“depth”, “mapq”

	
chrom_stats(chrom, duplicates)

	Analyze BAM (or CRAM) file for depth and mapping quality across a
single chromosome.

	Parameters

	chrom : str

The name of the chromosome to analyze

duplicates : bool

If True, duplicates included in analyses.

	Returns

	tuple

(mean_depth, mean_mapq)

	
chrom_counts()

	Get read counts per chrom from a bamfile

	
platypus_caller(platypus_path, log_path, ref, chroms, cpus, output_file, regions_file=None)

	Uses platypus to make variant calls on provided bam file

	Parameters

	platypus_path : str

Path to platypus

log_path : str

Path to and name of desired log file for platypus

ref : str

Path to reference sequence

chroms : list

Chromosomes to call variants on, e.g., [“chrX”, “chrY”, “chr19”]

cpus : int

Number of threads/cores to use

output_file : path

Path to and name of the output vcf

regions_file : {str, None}

If not None, must be path to bed file containing regions to call variants
in. If None, calls in call regions of provided chromosomes. Default =
None.

	Returns

	int

Exit code of the platypus call

	
xyalign.bam.switch_sex_chromosomes_sambamba(samtools_path, sambamba_path, bam_orig, bam_new, sex_chroms, output_directory, output_prefix, threads, pg_header_dict, cram=False)

	Removes sex chromosomes from original bam and merges in remmapped
sex chromosomes, while retaining the original bam header (and adding new
@PG line)

	Parameters

	samtools_path : str

The path to samtools

sambamba_path :

The path to sambamba

bam_orig : str

The path to the original full bam file

bam_new : str

The path to the bam file containing the remapped sex chromosomes

sex_chroms : list

Sex chromosomes (to be removed from bam_orig)

output_directory : str

The path to directory where all files (inc. temp) will be output

output_prefix : str

The name (without path) to use as prefix for all files

threads : int

The number of threads/cpus to use

pg_header_dict : dict

	dictionary with information to be included in the new @PG line

	
	
	must contain:

	Key = ‘CL’, value = list of command line values
Key = ‘ID’, value = string of program ID

	
	optional:

	Key = ‘VN’, value = string of program version

cram : bool

If True, will treat input as cram files and output cram files.
Otherwise, will treat input as bam. Defaule is False. True is currently
unsupported.

	Returns

	str

Bam or cram file path with new sex chromosomes, but all others intact.

	Raises

	RuntimeError

If cram is not False.

	
xyalign.bam.samtools_merge(samtools_path, bam_list, output_prefix, threads)

	Merges bam files using samtools.

	Parameters

	samtools_path : str

The path to samtools

bam_list : list

Bam files to be merged. Merging order will match order of this list.

output_prefix : str

	Returns

	str

path to merged bam

xyalign.ploidy module

	
xyalign.ploidy.permutation_test_chromosomes(data_frame, first_chrom, second_chrom, chrom_column, value_column, num_perms, output_file=None)

	Runs a permutation test comparing mean values of two chromosomes.

	Parameters

	data_frame : pandas dataframe

first_chrom : str

The name of the first chromosome in comparison

second_chrom : str

The name of the second chromosome in comparison

chrom_column : str

The name of the column containing chromosome names

value_column : str

The name of the column containing the value of interest

num_perms : int

The number of permutations to use

output_file : {str, None}

If not None, will print results to this file

	Returns

	tuple

(mean of first chrom, mean of second chrom, p-value)

	
xyalign.ploidy.ks_two_sample(data_frame, first_chrom, second_chrom, chrom_column, value_column, output_file=None)

	Runs a Two-sample Kolmogorov-Smirnov test

	Parameters

	data_frame : pandas dataframe

first_chrom : str

The name of the first chromosome in comparison

second_chrom : str

The name of the second chromosome in comparison

chrom_column : str

The name of the column containing chromosome names

value_column : str

The name of the column containing the value of interest

output_file : {str, None}

If not None, will print results to this file.

	Returns

	tuple

(ks_statistic, ks_pvalue)

	
xyalign.ploidy.bootstrap(data_frame, first_chrom, second_chrom, chrom_column, value_column, num_reps, output_file=None)

	Bootstraps the 95 percent confidence interval of the mean ratio of
measure for two chromosomes (chrom1 / chrom2).

	Parameters

	data_frame : pandas dataframe

first_chrom : str

The name of the first chromosome in comparison

second_chrom : str

The name of the second chromosome in comparison

chrom_column : str

The name of the column containing chromosome names

value_column : str

The name of the column containing the value of interest

num_reps : int

The number of bootstrap replicates to use

output_file : {str, None}

If not None, will print results to this file.

	Returns

	tuple

(mean ratio, 0.025 percentile, 0.975 percentile)

xyalign.reftools module

	
class xyalign.reftools.RefFasta(filepath, samtools='samtools', bwa='bwa', no_initial_index=False)

	A class for working with external reference fasta files

Attributes

	filepath

	(str) Full path to external bam file.

	samtools

	(str) Full path to samtools. Default = ‘samtools’

	bwa

	(str) Full path to bwa. Default = ‘bwa’

	
is_faidxed()

	Checks that fai index exists, is not empty and is newer than reference.

	Returns

	bool

True if fai index exists and is newer than fasta, False otherwise.

	
index_fai()

	Create fai index for reference using samtools (‘samtools faidx ref.fa’)

	Returns

	bool

True if successful

	Raises

	RuntimeError

If return code from external call is not 0

	
index_bwa()

	Index reference using bwa

	Returns

	bool

True if successful

	Raises

	RuntimeError

If return code from external call is not 0

	
check_bwa_index()

	Checks to see if bwa indices are newer than fasta.

	Returns

	bool

True if indices exist and are newer than fasta. False otherwise.

	
conditional_index_bwa(bwa='bwa')

	Indexes if indices are the same age or older than the fasta.
Use RefFasta.index_bwa() to force indexing.

	Parameters

	bwa : str

Path to bwa program (default is ‘bwa’)

	
check_seq_dict()

	Checks that sequence dictionary exists, is not empty and
is newer than reference.

	Returns

	bool

True if seq dict exists and is newer than fasta, False otherwise.

	
seq_dict(out_dict=None)

	Create sequence dictionary .dict file using samtools

	Parameters

	out_dict : str

The desired file name for the sequence dictionary -
defaults to adding ‘.dict’ to the fasta name

	Returns

	bool

True if exit code of external call is 0.

	Raises

	RuntimeError

If external call exit code is not 0.

	
conditional_seq_dict()

	Creates sequence dictionary if .dict the same age or older than the fasta,
or doesn’t exist.

Use RefFasta.seq_dict() to force creation.

	
mask_reference(bed_mask, output_fasta)

	Creates a new masked references by hardmasking regions included
in the bed_mask

	Parameters

	bed_mask : str

Bed file of regions to mask (as N) in the new reference

output_fasta : str

The full path to and filename of the output fasta

	Returns

	str

Path to new (indexed and masked) fasta

	
isolate_chroms(new_ref_prefix, chroms, bed_mask=None)

	Takes a reference fasta file and a list of chromosomes to include
and outputs a new, indexed (and optionally masked) reference fasta.

	Parameters

	new_ref_prefix : str

The desired path to and prefix of the output files

chroms : list

Chromosomes to include in the output fasta

bed_mask : str

Bed file of regions to mask (as N) in the new reference

	Returns

	str

Path to new, indexed (optionally masked) fasta

	
get_chrom_length(chrom)

	Extract chromosome length from fasta.

	Parameters

	chrom : str

The name of the chromosome or scaffold.

	Returns

	length : int

The length (integer) of the chromsome/scaffold

	Raises

	RuntimeError

If chromosome name not present in bam header

	
chromosome_bed(output_file, chromosome_list)

	Takes list of chromosomes and outputs a bed file with the
length of each chromosome on each line
(e.g., chr1 0 247249719).

	Parameters

	output_file : str

Name of (including full path to) desired output file

chromosome_list : list

Chromosome/scaffolds to include

	Returns

	str

output_file

	Raises

	RuntimeError

If chromosome name is not in fasta.

	
chromosome_lengths()

	
	Returns

	tuple

Chromosome lengths ordered by sequence order in fasta

	
chromosome_names()

	
	Returns

	tuple

Chromosome names ordered by sequence order in fasta

xyalign.utils module

	
xyalign.utils.validate_external_prog(prog_path, prog_name)

	Checks to see if external program can be called using provided path

	Parameters

	prog_path: path to call program

prog_name: name of program

	Returns

	int

0

	
xyalign.utils.validate_dir(parent_dir, dir_name)

	Checks if directory exists and if not, creates it.

	Parameters

	parent_dir : Parent directory name

dir_name : Name of the new directory

	Returns

	bool

whether the directory existed

	
xyalign.utils.check_bam_fasta_compatibility(bam_object, fasta_object)

	Checks to see if bam and fasta sequence names and lengths are
equivalent (i.e., if it is likely that the bam file was generated
using the fasta in question).

	Parameters

	bam_object : BamFile() object

fasta_object: RefFasta() object

	Returns

	bool

True if sequence names and lengths match. False otherwise.

	
xyalign.utils.check_compatibility_bam_list(bam_obj_list)

	Checks to see if bam sequence names and lengths are
equivalent (i.e., if it is likely that the bam files were generated
using the same reference genome).

	Parameters

	bam_obj_list : list

List of bam.BamFile() objects

	Returns

	bool

True if sequence names and lengths match. False otherwise.

	
xyalign.utils.merge_bed_files(output_file, *bed_files)

	This function simply takes an output_file (full path to desired output file)
and an arbitrary number of external bed files (including full path),
and merges the bed files into the output_file

	Parameters

	output_file : str

Full path to and name of desired output bed file

*bed_files

Variable length argument list of external bed files (include full path)

	Returns

	str

path to output_file

	
xyalign.utils.make_region_lists_genome_filters(depthAndMapqDf, mapqCutoff, min_depth, max_depth)

	Filters a pandas dataframe for mapq and depth based on using all values
from across the entire genome

	Parameters

	depthAndMapqDf : pandas dataframe

Must have ‘depth’ and ‘mapq’ columns

mapqCutoff : int

The minimum mapq for a window to be considered high quality

min_depth : float

Fraction of mean to set as minimum depth

max_depth : float

Multiple of mean to set as maximum depth

	Returns

	tuple

(passing dataframe, failing dataframe)

	
xyalign.utils.make_region_lists_chromosome_filters(depthAndMapqDf, mapqCutoff, min_depth, max_depth)

	Filters a pandas dataframe for mapq and depth based on thresholds calculated
per chromosome

	Parameters

	depthAndMapqDf : pandas dataframe

Must have ‘depth’ and ‘mapq’ columns

mapqCutoff : int

The minimum mapq for a window to be considered high quality

min_depth : float

Fraction of mean to set as minimum depth

max_depth : float

Multiple of mean to set as maximum depth

	Returns

	tuple

(passing dataframe, failing dataframe)

	
xyalign.utils.output_bed(outBed, *regionDfs)

	Concatenate and merges dataframes into an output bed file

	Parameters

	outBed : str

The full path to and name of the output bed file

*regionDfs

Variable length list of dataframes to be included

	Returns

	int

0

	
xyalign.utils.output_bed_no_merge(outBed, *regionDfs)

	Concatenate dataframes into an output bed file. This will preserve all
columns after the first three as well.

	Parameters

	outBed : str

The full path to and name of the output bed file

*regionDfs

Variable length list of dataframes to be included

	Returns

	int

0

	
xyalign.utils.chromosome_wide_plot(chrom, positions, y_value, measure_name, sampleID, output_prefix, MarkerSize, MarkerAlpha, Xlim, Ylim, x_scale=1000000)

	Plots values across a chromosome, where the x axis is the position along the
chromosome and the Y axis is the value of the measure of interest.

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Genomic coordinates

y_value : numpy array

The values of the measure of interest

measure_name : str

The name of the measure of interest (y axis title)

sampleID : str

The name of the sample

output_prefix : str

Full path to and prefix of desired output plot

MarkerSize : float

Size in points^2

MarkerAlpha : float

Transparency (0 to 1)

Xlim : float

Maximum X value

Ylim : float

Maximum Y value

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

	Returns

	int

0

	
xyalign.utils.hist_array(chrom, value_array, measure_name, sampleID, output_prefix)

	Plots a histogram of an array of values of interest. Intended for mapq and
depth, but generalizeable. Separate function from variants.hist_read_balance
because that function eliminates fixed variants, while this function will
plot all values.

	Parameters

	chrom : str

Name of the chromosome

value_array : numpy array

Read balance values

measure_name : str

The name of the measure of interest (y axis title)

sampleID : str

Sample name or id to include in the plot title

output_prefix : str

Desired prefix (including full path) of the output files

	Returns

	int

0 if plotting successful, 1 otherwise.

	
xyalign.utils.plot_depth_mapq(window_df, output_prefix, sampleID, chrom_length, MarkerSize, MarkerAlpha, x_scale=1000000)

	Creates histograms and genome-wide plots of various metrics.

	Parameters

	window_df : pandas dataframe

Columns must include chrom, start, depth, and mapq (at least)

output_prefix : str

Path and prefix of output files to create

sampleID : str

Sample ID

chrom_length: int

Length of chromosome

x_scale : int

Divide all x values (including Xlim) by this value for chromosome_wide_plot.
Default is 1000000 (1MB)

	Returns

	int

0

	
xyalign.utils.before_after_plot(chrom, positions, values_before, values_after, measure_name, sampleID, output_prefix, MarkerSize, MarkerAlpha, Xlim, YMin='auto', YMax='auto', x_scale=1000000, Color='black')

	Plots difference between before/after values (after minus before) across
a chromosome.

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Genomic coordinates

values_before : numpy array

The values of the measure of interest in the “before” condidtion

values_after : numpy array

The values of the measure of interest in the “after” condidtion

measure_name : str

The name of the measure of interest (for y-axis title)

sampleID : str

The name of the sample

output_prefix : str

Full path to and prefix of desired output plot

MarkerSize : float

Size in points^2

MarkerAlpha : float

Transparency (0 to 1)

Xlim : float

Maximum X value

YMin : str, int, or float

If “auto”, will allow matplotlib to automatically determine limit. Otherwise,
will set the y axis minimum to the value provided (int or float)

YMax : str, int, or float

If “auto”, will allow matplotlib to automatically determine limit. Otherwise,
will set the y axis maximum to the value provided (int or float)

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

Color : str

Color to use for points. See matplotlib documentation for acceptable options

	Returns

	int

0 if plotting successful, 1 otherwise

xyalign.variants module

	
class xyalign.variants.VCFFile(filepath, bgzip='bgzip', tabix='tabix', no_initial_compress=False)

	A class for working with external vcf files.

Attributes

	filepath

	(str) Full path to external vcf file

	bgzip

	(str) Full path to bgzip. Default = ‘bgzip’

	tabix

	(str) Full path to tabix. Default = “tabix”

	
is_bgzipped()

	Checks to see if vcf file is gzipped, simply by looking for a .gz or
.bgz ending.
If .gz or .bgz ending exists, assumes file is compressed using bgzip.

	Returns

	bool

True if ends in .gz, False otherwise

	
compress_vcf()

	Compresses vcf file using bgzip.

	Returns

	bool

True if successful

	Raises

	RuntimeError

If return code from external call is not 0

	
index_vcf()

	Indexes vcf file using tabix. If file does not end in .gz, will
compress with bgzip (by calling self.compress_vcf).

Note: Files MUST be compressed using bgzip.

	Returns

	bool

True if successful.

	Raises

	RuntimeError

If return code from external call is not 0.

	
parse_platypus_VCF(site_qual, genotype_qual, depth, chrom)

	Parse vcf generated by Platypus to grab read balance. Note that this
is hard-coded to Platypus (version 0.8.1) and will not generalize to vcfs
generated with other programs (and, potentially, other versions of Platypus)

	Parameters

	site_qual : int

Minimum (PHRED) site quality at which sites should be included

genotype_qual : int

Minimum (PHRED) genotype quality at which sites should be included

depth : int

Minimum depth at which sites should be included

chrom : str

Name of the chromosome to include

	Returns

	tuple

	five corresponding arrays of the same length:

	(position across the chromosome, site quality, read balance,
genotype quality, and depth)

	
plot_variants_per_chrom(chrom_list, sampleID, output_prefix, site_qual, genotype_qual, depth, MarkerSize, MarkerAlpha, bamfile_obj, variant_caller, homogenize, dataframe_out, min_count, window_size, x_scale=1000000, target_file=None, include_fixed=False)

	Parses a vcf file and plots read balance in separate plots
for each chromosome in the input list

	Parameters

	chrom_list : list

Chromosomes to include

sampleID : str

Sample ID (for plot titles)

output_prefix : str

Full path to and prefix of desired output plots

site_qual : int

Minimum (PHRED) site quality at which sites should be included

genotype_qual : int

Minimum (PHRED) genotype quality at which sites should be included

depth : int

Minimum depth at which sites should be included

MarkerSize : float

Size of markers (matplotlib sizes) to use in the figure

MarkerAlpha : float

Transparency (matplotlib values, 0 to 1) of markers

bamfile_obj : BamFile() object

Used to get chromosome lengths only

variant_caller : str

Variant caller used to generate vcf - currently only “platypus” supported

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

dataframe_out : str

Full path of file to write pandas dataframe to. Will overwire if exists

min_count : int

Minimum number of variants to include a window for plotting.

window_size

If int, the window size to use for sliding window analyses, if None
intervals from target_file

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

target_file : str

Path to bed_file containing regions to analyze instead of
windows of a fixed size. Will only be engaged if window_size is None

include_fixed : bool

If False, only plots histogram for values between 0.05 and 1.0. If
True, plots histogram of all variants.

	Returns

	int

0 if variants to analyze; 1 if no variants to analyze on any chromosome

	
xyalign.variants.read_balance_per_window(chrom, positions, readBalance, sampleID, homogenize, chr_len, window_size, target_file=None)

	Calculates mean read balance per genomic window (defined by size or an
external target bed file) for a given chromosome. Takes as input an array
of positions and an array of read balances - the order of which must
correspond exactly. In addition, the positions are expected to ALL BE ON
THE SAME CHROMOSOME and be in numerically sorted order (i.e., the output
of parse_platypus_VCF())

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Positions along the chromosome (same length as readBalance)

readBalance : numpy array

Read balance corresponding with the positions in the positions array

sampleID : str

Sample name or id to include in the plot title

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

chr_len : int

Length of chromosome. Ignored if target_file is provided.

window_size

If int, the window size to use for sliding window analyses, if None
intervals from target_file

target_file : str

Path to bed file containing regions to analyze instead of
windows of a fixed size. Will only be engaged if window_size is None

	Returns

	pandas dataframe

With columns: “chrom”, “start”, “stop”, “balance”, and “count”

	
xyalign.variants.plot_read_balance(chrom, positions, readBalance, sampleID, output_prefix, MarkerSize, MarkerAlpha, homogenize, chrom_len, x_scale=1000000)

	Plots read balance at each SNP along a chromosome

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Positions along the chromosome (same length as readBalance)

readBalance : numpy array

Read balance corresponding with the positions in the positions array

sampleID : str

Sample name or id to include in the plot title

output_prefix : str

Desired prefix (including full path) of the output files

MarkerSize : float

Size of markers (matplotlib sizes) to use in the figure

MarkerAlpha : float

Transparency (matplotlib values) of markers for the figure

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

chrom_len : int

Length of chromosome

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

	Returns

	int

0

	
xyalign.variants.hist_read_balance(chrom, readBalance, sampleID, homogenize, output_prefix, include_fixed=False)

	Plots a histogram of read balance values between 0.05 and 1.0 (non-incusive)

	Parameters

	chrom : str

Name of the chromosome

readBalance : list or numpy array

Read balance values

sampleID : str

Sample name or id to include in the plot title

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

output_prefix : str

Desired prefix (including full path) of the output files

include_fixed : bool

If False, only plots histogram for values between 0.05 and 1.0. If
True, plots histogram of all variants.

	Returns

	int

0 if plotting successful, 1 otherwise.

xyalign.xyalign module

	
xyalign.xyalign.parse_args()

	Parse command-line arguments

	Returns

	Parser argument namespace

	
xyalign.xyalign.ref_prep(ref_obj, ref_mask, ref_dir, xx, xy, y_chromosome, samtools_path, bwa_path, bwa_index)

	Reference prep part of XYalign pipeline.

	Creates two reference fasta files. Both will include masks provied with

ref_mask. One will additionally have the entire Y chromosome
hard masked.

	Indexes (.fai, .dict, and optionally bwa indices) both new references

	Parameters

	ref_obj : RefFasta() object

A reftools.RefFasta() object of a fasta reference file to be processed

ref_mask : list or None

List of files to use to hard-mask references. None will ignore masking.

ref_dir : str

Path to output directory

xx : str

Path to XX output reference

xy : str

Path to XY output reference

y_chromosome : str

Name of Y chromosome in fasta

samtools_path : str

The path to samtools (i.e, “samtools” if in path)

bwa_path : str

The path to bwa (i.e, “bwa” if in path)

bwa_index : bool

If True, create bwa indices. Don’t if False.

	Returns

	tuple

Paths to two masked references (y_masked, y_unmasked)

	
xyalign.xyalign.chrom_stats(bam_obj_list, chrom_list, use_counts)

	Runs chrom stats module.

Calculates mean depth and mapq across entire scaffolds for a list of bam
files

	Returns

	tuple

Tuple containing two dictionaries with results for
depth and mapq, respectively. Or, if use_counts is True, returns a
tuple containing the count dictionary and None.

	
xyalign.xyalign.bam_analysis(input_bam_obj, platypus_calling, platypus_path, vcf_log, ref_obj, input_chroms, cpus, out_vcf, no_variant_plots, window_size, target_bed, sample_id, readbalance_prefix, variant_site_quality, variant_genotype_quality, variant_depth, marker_size, marker_transparency, homogenize_read_balance, data_frame_readbalance, min_variant_count, no_bam_analysis, ignore_duplicates, exact_depth, whole_genome_threshold, mapq_cutoff, min_depth_filter, max_depth_filter, depth_mapq_prefix, bam_data_frame, output_bed_high, output_bed_low, use_bed_for_platypus, coordinate_scale, fixed)

	Runs bam analyis part of XYalign pipeline on bam file.

	(Optionally) calls variants using Platypus

	(Optionally) parses and filters Platypus vcf, and plots read balance

	
	(Optionally) Calculates window based metrics from the bam file:

	depth and mapq

	(optionally) Plots window-based metrics

	Outputs two bed files: high quality windows, and low quality windows.

	Parameters

	input_bam_obj : bam.BamFile() object

platypus_calling : bool

If True, will call and analyze variants

platypus_path : str

Command to call platypus (e.g, “platypus”)

vcf_log : str

Path to file for platypus log

ref_obj : reftools.RefFasta() object

input_chroms : list

Chromosomes to analyze

cpus : int

Number of threads/cpus

out_vcf : str

Output vcf path/name

no_variant_plots : bool

If True, will not plot read balance

window_size : int or None

Window size for sliding window analyses (both bam and vcf). If None,
will use regions in target_bed

target_bed : str or None

Path to bed file containing targets to use in sliding window analyses

sample_id : str

readbalance_prefix : str

Prefix, including full path, to use for output files for
readbalance analyses

variant_site_quality : int

Minimum site quality (PHRED) for a site to be included in
readbalance analyses

variant_genotype_quality : int

Minimum genotype quality for a site to be included in read balance analyses

variant_depth : int

Minimum depth for a site to be included in read balance analyses

marker_size : float

Marker size for plotting genome scatter plots

marker_transparency: float

Value to use for marker transparency in genome scatter plots

homogenize_read_balance : bool

If true, will subtract values less than 0.5 from 1. I.e., 0.25 and 0.75
would be treated equivalently

data_frame_readbalance: str

Path of output file for full read balance dataframe

min_variant_count : int

Minimum number of variants in a given window for the window to be
plotted in window-based read balance analyses

no_bam_analysis : bool

If True, no bam analyses will take place

ignore_duplicates : bool

If True, duplicates excluded from bam analyses

exact_depth : bool

If True, exact depth calculated in each window. Else, a much faster
approximation will be used

whole_genome_threshold : bool

If True, values for depth filters will be calculated using mean from
across all chromosomes included in analyses. Else, mean will be taken
per chromosome

min_depth_filter : float

Minimum depth threshold for a window to be considered high. Calculated
as mean depth * min_depth_filter.

max_depth_filter : float

Maximum depth threshold for a window to be considered high. Calculated
as mean depth * min_depth_filter.

depth_mapq_prefix : str

Prefix, including full path, to be used for files output from depth and
mapq analyses

bam_data_frame : str

Full path to output file for dataframe containing all data from bam
analyses

output_bed_high : str

Full path to output bed containing high quality (i.e., passing
filters) windows

output_bed_low : str

Full path to output bed containing low quality (i.e., failing
filters) windows

use_bed_for_platypus : bool

If True, use output_bed_high as regions for Platypus calling

coordinate_scale : int

Divide all coordinates by this value for plotting. In most cases, 1000000
will be ideal for eukaryotic genomes.

fixed : bool

If False, only plots histogram for values between 0.05 and 1.0
(non-inclusive). If True, plots histogram of all variants.

	Returns

	tuple

(list of pandas dataframes with passing windows,
list of pandas dataframes with failing windows)

	
xyalign.xyalign.ploidy_analysis(passing_df, failing_df, no_perm_test, no_ks_test, no_bootstrap, input_chroms, x_chromosome, y_chromosome, results_dir, num_permutations, num_bootstraps, sample_id)

	Runs the ploidy analysis part of XYalign.

	Runs permutation test to systematically compare means between

every possible pair of chromosomes

	Runs K-S two sample test to systematically compare distributions between

every possible pair of chromosomes

	Bootstraps the mean depth ratio for every possible pair of chromosomes

	Parameters

	passing_df : list

Passing pandas dataframes, one per chromosome

failing_df : list

Failing pandas dataframes, one per chromosome

no_perm_test : bool

If False, permutation test will be run

no_ks_test : bool

If False, KS test will be run

no_bootstrap : bool

If False, bootstrap analysis will be run

input_chroms : list

Chromosomes/scaffolds to analyze

x_chromosome : list

X-linked scaffolds

y_chromosome : list

Y-likned scaffolds

results_dir : str

Full path to directory to output results

num_permutations : int

Number of permutations

num_bootstraps : int

Number of bootstrap replicates

sample_id : str

	Returns

	dictionary

Results for each test. Keys: perm, ks, boot.

	
xyalign.xyalign.remapping(input_bam_obj, y_pres, masked_references, samtools_path, sambamba_path, repairsh_path, shufflesh_path, bwa_path, bwa_flags, single_end, bam_dir, fastq_dir, sample_id, x_chromosome, y_chromosome, cpus, xmx, fastq_compression, cleanup, read_group_id)

	Runs remapping steps of XYalign.

	Strips, sorts, and re-pair reads from the sex chromosomes (collecting read

group information)

	Maps (with sorting) reads (with read group information) to appropriate

reference based on presence (or not) of Y chromosome

	Merge bam files (if more than one read group)

	Parameters

	input_bam_obj : bam.BamFile() object

y_pres : bool

True if Y chromosome present in individual

masked_references : tuple

Masked reference objects (xx, xy)

samtools_path : str

Path/command to call samtools

sambamba_path : str

Path/command to call sambamba

repairsh_path : str

Path/command to call repair.sh

shufflesh_path : str

Path/command to call shuffle.sh

bwa_path : str

Path/command to call bwa

bwa_flags : str

Flags to use for bwa mapping

single_end : bool

If True, reads treated as single end

bam_dir : str

Path to output directory for bam files

fastq_dir : str

Path to output directory for fastq files

sample_id : str

x_chromosome : list

X-linked scaffolds

y_chromosome : list

Y-linked scaffolds

cpus : int

Number of threads/cpus

xmx : str

Value to be combined with -Xmx for java programs (i.e., 4g would
result in -Xmx4g)

fastq_compression : int

Compression level for fastq files. 0 leaves fastq files uncompressed.
Otherwise values should be between 1 and 9 (inclusive), with
larger values indicating more compression

cleanup : bool

If True, will delete temporary files

read_group_id : str

ID to use to add read group information

	Returns

	str

Path to bam containing remapped sex chromsomes

	
xyalign.xyalign.swap_sex_chroms(input_bam_obj, new_bam_obj, samtools_path, sambamba_path, x_chromosome, y_chromosome, bam_dir, sample_id, cpus, xyalign_params)

	Switches sex chromosmes from new_bam_file with those in original bam file

	Parameters

	input_bam_obj : bam.BamFile() object

Original input bam file object

new_bam_obj : bam.BamFile() object

Bam file object containing newly mapped sex chromosomes (to insert)

samtools_path : str

Path/command to call samtools

sambamba_path : str

Path/command to call sambamba

x_chromosome : list

X-linked scaffolds

y_chromosome : str

Y-linked scaffolds

bam_dir : str

Path to bam output directory

sample_id : str

cpus : int

Number of threads/cpus

xyalign_params : dict

Dictionary of xyalign_params to add to bam header

	Returns

	str

Path to new bam file containing original autosomes and new sex chromosomes

	
xyalign.xyalign.main()

	

xyalign.assemble module

	
xyalign.assemble.bwa_mem_mapping_sambamba(bwa_path, samtools_path, sambamba_path, reference, output_prefix, fastqs, threads, read_group_line, bwa_params, cram=False)

	Maps reads to a reference genome using bwa mem. If output is in bam format,
will sort using sambamba, else will sort with samtools

	Parameters

	bwa_path : str

The path to bwa

samtools_path : str

The path to samtools

sambamba_path : str

The path to sambamba

reference : reftools.RefFasta() object

reftools.RefFasta() object of reference genome (in fasta format)

output_prefix : str

The prefix (including path) to the desired output files

fastqs : list

Fastqs, e.g. [‘sample_1.fastq’, ‘sample_2.fastq’]

threads : int

The number of threads/cpus to use

read_group_line : str

Read group info for bwa to add. If ‘None’, will not add read group.

bwa_params : list

Bwa parameters to be joined into a string and inserted into the command

cram : bool

If True, will output a sorted cram, else a sorted bam. Default is False.

	Returns

	str

Path to output bam file (indexed)

	Raises

	RuntimeError

If fastq or reference files cannot be found

xyalign.bam module

	
class xyalign.bam.BamFile(filepath, samtools='samtools', no_initial_index=False)

	A class for working with external bam files

Attributes

	filepath

	(str) Full path to external bam file.

	samtools

	(str) Full path to samtools. Default = ‘samtools’

	
is_indexed()

	Checks that bam index exists, is not empty, and is newer than bam.

	Returns

	bool

True if bam index exists and is newer than bam, False otherwise.

	
index_bam()

	Indexes a bam using samtools (‘samtools index file.bam’).

	Returns

	bool

True if successful.

	Raises

	RuntimeError

If return code from external call is not 0.

	
get_chrom_length(chrom)

	Extract chromosome length from BAM header.

	Parameters

	chrom : str

The name of the chromosome or scaffold.

	Returns

	length : int

The length (integer) of the chromsome/scaffold

	Raises

	RuntimeError

If chromosome name not present in bam header

	
chromosome_lengths()

	
	Returns

	tuple

chromosome lengths ordered by sequence order in bam header

	
chromosome_names()

	
	Returns

	tuple

chromosome names ordered by sequence order in bam header

	
chromosome_bed(output_file, chromosome_list)

	Takes list of chromosomes and outputs a bed file with the
length of each chromosome on each line
(e.g., chr1 0 247249719).

	Parameters

	output_file : str

Name of (including full path to) desired output file

chromosome_list : list

Chromosome/scaffolds to include

	Returns

	str

output_file

	Raises

	RuntimeError

If chromosome name is not in bam header.

	
check_chrom_in_bam(chromosome_list)

	Checks to see if all chromosomes in chromosome_list are in bam file

	Parameters

	chromosome_list : list

Chromosomes/scaffolds to check

	Returns

	list

List of chromosomes not in bam file

	
sort_bam(sorted_bam, query_name=False)

	Sorts bam file by coordinate (query_name=False) or
query name (query_name=True)

	Parameters

	sorted_bam : str

Full path to (including desired name of) output bam file

query_name : bool

If True, sort by query name (read ID), else sort by coordinate

	Returns

	BamFile() object

BamFile() object of new, sorted bam file

	
extract_regions(regions, new_bam, rg_id=None)

	Extracts regions from a bam file into new bam file.

	Parameters

	regions : list

regions from which reads will be stripped

new_bam : str

Full path to and desired name of output bam file

rg_id : str or None

Path to text file containing read group ids to use when isolating regions.
If None, all reads from regions will be extracted.

	Returns

	BamFile() object

BamFile() object of new bam file (containing extracted regions)

	
extract_read_group(new_bam, rg_id)

	Extracts all reads belonging to a given RG ID from a
bam file into new bam file.

	Parameters

	new_bam : str

Full path to and desired name of output bam file

rg_id : str

Path to text file containing read group ids to use when isolating regions.

	Returns

	BamFile() object

BamFile() object of new bam file (containing extracted regions)

	
strip_reads(repairsh, shufflesh, single, output_directory, output_prefix, regions, repair_xmx, compression, cleanup=True, default_rg='None')

	Strips reads from a bam or cram file in provided regions and outputs
sorted fastqs containing reads, one set of fastq files per read group.

	Parameters

	repairsh : str

Path to repair.sh (from BBmap)

shufflesh : str

Path to shuffle.sh (from BBmap)

single : bool

If true output single-end fastq, otherwise output paired-end fastqs

output_directory : str

The directory for ALL output (including temporary files)

output_prefix : str

The name (without path) to use for prefix to output fastqs

regions : list

regions from which reads will be stripped

repair_xmx : str

If “None”, repair.sh will allocate its own memory. Otherwise value
will be provided in the form of -Xmx4g, where 4g is the value provided
as repair_xmx

compression : int

Desired compression level (0-9) for output fastqs. If 0, fastqs
will be uncompressed.

cleanup : bool

If true, will clean up temporary files.

default_rg : str

If “None”, no default read group will be created. Otherwise, default
read group will be string provided. This read group will consist
exclusively of an ID.

	Returns

	list

A two-item list containing the path to a text file pairing read group
names with associated output fastqs, and a text file containing a
list of @RG lines associated with each read group

	
analyze_bam(chrom, duplicates, exact, window_size, target_file=None)

	Analyze BAM (or CRAM) file for depth and mapping quality across genomic
windows.

	Parameters

	chrom : str

The name of the chromosome to analyze

duplicates : bool

If True, duplicates included in analyses.

exact : bool

If True, mean depth is calculated exactly within each window.
If False, an accurate (and much faster) approximation is used

window_size

If int, the window size to use for sliding window analyses, if None
intervals from target_file

target_file : str

Path to bed_file containing regions to analyze instead of
windows of a fixed size. Will only be engaged if window_size is None

	Returns

	pandas dataframe

pandas data frame with the columns: “chrom”, “start”, “stop”,
“depth”, “mapq”

	
chrom_stats(chrom, duplicates)

	Analyze BAM (or CRAM) file for depth and mapping quality across a
single chromosome.

	Parameters

	chrom : str

The name of the chromosome to analyze

duplicates : bool

If True, duplicates included in analyses.

	Returns

	tuple

(mean_depth, mean_mapq)

	
chrom_counts()

	Get read counts per chrom from a bamfile

	
platypus_caller(platypus_path, log_path, ref, chroms, cpus, output_file, regions_file=None)

	Uses platypus to make variant calls on provided bam file

	Parameters

	platypus_path : str

Path to platypus

log_path : str

Path to and name of desired log file for platypus

ref : str

Path to reference sequence

chroms : list

Chromosomes to call variants on, e.g., [“chrX”, “chrY”, “chr19”]

cpus : int

Number of threads/cores to use

output_file : path

Path to and name of the output vcf

regions_file : {str, None}

If not None, must be path to bed file containing regions to call variants
in. If None, calls in call regions of provided chromosomes. Default =
None.

	Returns

	int

Exit code of the platypus call

	
xyalign.bam.switch_sex_chromosomes_sambamba(samtools_path, sambamba_path, bam_orig, bam_new, sex_chroms, output_directory, output_prefix, threads, pg_header_dict, cram=False)

	Removes sex chromosomes from original bam and merges in remmapped
sex chromosomes, while retaining the original bam header (and adding new
@PG line)

	Parameters

	samtools_path : str

The path to samtools

sambamba_path :

The path to sambamba

bam_orig : str

The path to the original full bam file

bam_new : str

The path to the bam file containing the remapped sex chromosomes

sex_chroms : list

Sex chromosomes (to be removed from bam_orig)

output_directory : str

The path to directory where all files (inc. temp) will be output

output_prefix : str

The name (without path) to use as prefix for all files

threads : int

The number of threads/cpus to use

pg_header_dict : dict

	dictionary with information to be included in the new @PG line

	
	
	must contain:

	Key = ‘CL’, value = list of command line values
Key = ‘ID’, value = string of program ID

	
	optional:

	Key = ‘VN’, value = string of program version

cram : bool

If True, will treat input as cram files and output cram files.
Otherwise, will treat input as bam. Defaule is False. True is currently
unsupported.

	Returns

	str

Bam or cram file path with new sex chromosomes, but all others intact.

	Raises

	RuntimeError

If cram is not False.

	
xyalign.bam.samtools_merge(samtools_path, bam_list, output_prefix, threads)

	Merges bam files using samtools.

	Parameters

	samtools_path : str

The path to samtools

bam_list : list

Bam files to be merged. Merging order will match order of this list.

output_prefix : str

	Returns

	str

path to merged bam

xyalign.ploidy module

	
xyalign.ploidy.permutation_test_chromosomes(data_frame, first_chrom, second_chrom, chrom_column, value_column, num_perms, output_file=None)

	Runs a permutation test comparing mean values of two chromosomes.

	Parameters

	data_frame : pandas dataframe

first_chrom : str

The name of the first chromosome in comparison

second_chrom : str

The name of the second chromosome in comparison

chrom_column : str

The name of the column containing chromosome names

value_column : str

The name of the column containing the value of interest

num_perms : int

The number of permutations to use

output_file : {str, None}

If not None, will print results to this file

	Returns

	tuple

(mean of first chrom, mean of second chrom, p-value)

	
xyalign.ploidy.ks_two_sample(data_frame, first_chrom, second_chrom, chrom_column, value_column, output_file=None)

	Runs a Two-sample Kolmogorov-Smirnov test

	Parameters

	data_frame : pandas dataframe

first_chrom : str

The name of the first chromosome in comparison

second_chrom : str

The name of the second chromosome in comparison

chrom_column : str

The name of the column containing chromosome names

value_column : str

The name of the column containing the value of interest

output_file : {str, None}

If not None, will print results to this file.

	Returns

	tuple

(ks_statistic, ks_pvalue)

	
xyalign.ploidy.bootstrap(data_frame, first_chrom, second_chrom, chrom_column, value_column, num_reps, output_file=None)

	Bootstraps the 95 percent confidence interval of the mean ratio of
measure for two chromosomes (chrom1 / chrom2).

	Parameters

	data_frame : pandas dataframe

first_chrom : str

The name of the first chromosome in comparison

second_chrom : str

The name of the second chromosome in comparison

chrom_column : str

The name of the column containing chromosome names

value_column : str

The name of the column containing the value of interest

num_reps : int

The number of bootstrap replicates to use

output_file : {str, None}

If not None, will print results to this file.

	Returns

	tuple

(mean ratio, 0.025 percentile, 0.975 percentile)

xyalign.reftools module

	
class xyalign.reftools.RefFasta(filepath, samtools='samtools', bwa='bwa', no_initial_index=False)

	A class for working with external reference fasta files

Attributes

	filepath

	(str) Full path to external bam file.

	samtools

	(str) Full path to samtools. Default = ‘samtools’

	bwa

	(str) Full path to bwa. Default = ‘bwa’

	
is_faidxed()

	Checks that fai index exists, is not empty and is newer than reference.

	Returns

	bool

True if fai index exists and is newer than fasta, False otherwise.

	
index_fai()

	Create fai index for reference using samtools (‘samtools faidx ref.fa’)

	Returns

	bool

True if successful

	Raises

	RuntimeError

If return code from external call is not 0

	
index_bwa()

	Index reference using bwa

	Returns

	bool

True if successful

	Raises

	RuntimeError

If return code from external call is not 0

	
check_bwa_index()

	Checks to see if bwa indices are newer than fasta.

	Returns

	bool

True if indices exist and are newer than fasta. False otherwise.

	
conditional_index_bwa(bwa='bwa')

	Indexes if indices are the same age or older than the fasta.
Use RefFasta.index_bwa() to force indexing.

	Parameters

	bwa : str

Path to bwa program (default is ‘bwa’)

	
check_seq_dict()

	Checks that sequence dictionary exists, is not empty and
is newer than reference.

	Returns

	bool

True if seq dict exists and is newer than fasta, False otherwise.

	
seq_dict(out_dict=None)

	Create sequence dictionary .dict file using samtools

	Parameters

	out_dict : str

The desired file name for the sequence dictionary -
defaults to adding ‘.dict’ to the fasta name

	Returns

	bool

True if exit code of external call is 0.

	Raises

	RuntimeError

If external call exit code is not 0.

	
conditional_seq_dict()

	Creates sequence dictionary if .dict the same age or older than the fasta,
or doesn’t exist.

Use RefFasta.seq_dict() to force creation.

	
mask_reference(bed_mask, output_fasta)

	Creates a new masked references by hardmasking regions included
in the bed_mask

	Parameters

	bed_mask : str

Bed file of regions to mask (as N) in the new reference

output_fasta : str

The full path to and filename of the output fasta

	Returns

	str

Path to new (indexed and masked) fasta

	
isolate_chroms(new_ref_prefix, chroms, bed_mask=None)

	Takes a reference fasta file and a list of chromosomes to include
and outputs a new, indexed (and optionally masked) reference fasta.

	Parameters

	new_ref_prefix : str

The desired path to and prefix of the output files

chroms : list

Chromosomes to include in the output fasta

bed_mask : str

Bed file of regions to mask (as N) in the new reference

	Returns

	str

Path to new, indexed (optionally masked) fasta

	
get_chrom_length(chrom)

	Extract chromosome length from fasta.

	Parameters

	chrom : str

The name of the chromosome or scaffold.

	Returns

	length : int

The length (integer) of the chromsome/scaffold

	Raises

	RuntimeError

If chromosome name not present in bam header

	
chromosome_bed(output_file, chromosome_list)

	Takes list of chromosomes and outputs a bed file with the
length of each chromosome on each line
(e.g., chr1 0 247249719).

	Parameters

	output_file : str

Name of (including full path to) desired output file

chromosome_list : list

Chromosome/scaffolds to include

	Returns

	str

output_file

	Raises

	RuntimeError

If chromosome name is not in fasta.

	
chromosome_lengths()

	
	Returns

	tuple

Chromosome lengths ordered by sequence order in fasta

	
chromosome_names()

	
	Returns

	tuple

Chromosome names ordered by sequence order in fasta

xyalign.utils module

	
xyalign.utils.validate_external_prog(prog_path, prog_name)

	Checks to see if external program can be called using provided path

	Parameters

	prog_path: path to call program

prog_name: name of program

	Returns

	int

0

	
xyalign.utils.validate_dir(parent_dir, dir_name)

	Checks if directory exists and if not, creates it.

	Parameters

	parent_dir : Parent directory name

dir_name : Name of the new directory

	Returns

	bool

whether the directory existed

	
xyalign.utils.check_bam_fasta_compatibility(bam_object, fasta_object)

	Checks to see if bam and fasta sequence names and lengths are
equivalent (i.e., if it is likely that the bam file was generated
using the fasta in question).

	Parameters

	bam_object : BamFile() object

fasta_object: RefFasta() object

	Returns

	bool

True if sequence names and lengths match. False otherwise.

	
xyalign.utils.check_compatibility_bam_list(bam_obj_list)

	Checks to see if bam sequence names and lengths are
equivalent (i.e., if it is likely that the bam files were generated
using the same reference genome).

	Parameters

	bam_obj_list : list

List of bam.BamFile() objects

	Returns

	bool

True if sequence names and lengths match. False otherwise.

	
xyalign.utils.merge_bed_files(output_file, *bed_files)

	This function simply takes an output_file (full path to desired output file)
and an arbitrary number of external bed files (including full path),
and merges the bed files into the output_file

	Parameters

	output_file : str

Full path to and name of desired output bed file

*bed_files

Variable length argument list of external bed files (include full path)

	Returns

	str

path to output_file

	
xyalign.utils.make_region_lists_genome_filters(depthAndMapqDf, mapqCutoff, min_depth, max_depth)

	Filters a pandas dataframe for mapq and depth based on using all values
from across the entire genome

	Parameters

	depthAndMapqDf : pandas dataframe

Must have ‘depth’ and ‘mapq’ columns

mapqCutoff : int

The minimum mapq for a window to be considered high quality

min_depth : float

Fraction of mean to set as minimum depth

max_depth : float

Multiple of mean to set as maximum depth

	Returns

	tuple

(passing dataframe, failing dataframe)

	
xyalign.utils.make_region_lists_chromosome_filters(depthAndMapqDf, mapqCutoff, min_depth, max_depth)

	Filters a pandas dataframe for mapq and depth based on thresholds calculated
per chromosome

	Parameters

	depthAndMapqDf : pandas dataframe

Must have ‘depth’ and ‘mapq’ columns

mapqCutoff : int

The minimum mapq for a window to be considered high quality

min_depth : float

Fraction of mean to set as minimum depth

max_depth : float

Multiple of mean to set as maximum depth

	Returns

	tuple

(passing dataframe, failing dataframe)

	
xyalign.utils.output_bed(outBed, *regionDfs)

	Concatenate and merges dataframes into an output bed file

	Parameters

	outBed : str

The full path to and name of the output bed file

*regionDfs

Variable length list of dataframes to be included

	Returns

	int

0

	
xyalign.utils.output_bed_no_merge(outBed, *regionDfs)

	Concatenate dataframes into an output bed file. This will preserve all
columns after the first three as well.

	Parameters

	outBed : str

The full path to and name of the output bed file

*regionDfs

Variable length list of dataframes to be included

	Returns

	int

0

	
xyalign.utils.chromosome_wide_plot(chrom, positions, y_value, measure_name, sampleID, output_prefix, MarkerSize, MarkerAlpha, Xlim, Ylim, x_scale=1000000)

	Plots values across a chromosome, where the x axis is the position along the
chromosome and the Y axis is the value of the measure of interest.

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Genomic coordinates

y_value : numpy array

The values of the measure of interest

measure_name : str

The name of the measure of interest (y axis title)

sampleID : str

The name of the sample

output_prefix : str

Full path to and prefix of desired output plot

MarkerSize : float

Size in points^2

MarkerAlpha : float

Transparency (0 to 1)

Xlim : float

Maximum X value

Ylim : float

Maximum Y value

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

	Returns

	int

0

	
xyalign.utils.hist_array(chrom, value_array, measure_name, sampleID, output_prefix)

	Plots a histogram of an array of values of interest. Intended for mapq and
depth, but generalizeable. Separate function from variants.hist_read_balance
because that function eliminates fixed variants, while this function will
plot all values.

	Parameters

	chrom : str

Name of the chromosome

value_array : numpy array

Read balance values

measure_name : str

The name of the measure of interest (y axis title)

sampleID : str

Sample name or id to include in the plot title

output_prefix : str

Desired prefix (including full path) of the output files

	Returns

	int

0 if plotting successful, 1 otherwise.

	
xyalign.utils.plot_depth_mapq(window_df, output_prefix, sampleID, chrom_length, MarkerSize, MarkerAlpha, x_scale=1000000)

	Creates histograms and genome-wide plots of various metrics.

	Parameters

	window_df : pandas dataframe

Columns must include chrom, start, depth, and mapq (at least)

output_prefix : str

Path and prefix of output files to create

sampleID : str

Sample ID

chrom_length: int

Length of chromosome

x_scale : int

Divide all x values (including Xlim) by this value for chromosome_wide_plot.
Default is 1000000 (1MB)

	Returns

	int

0

	
xyalign.utils.before_after_plot(chrom, positions, values_before, values_after, measure_name, sampleID, output_prefix, MarkerSize, MarkerAlpha, Xlim, YMin='auto', YMax='auto', x_scale=1000000, Color='black')

	Plots difference between before/after values (after minus before) across
a chromosome.

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Genomic coordinates

values_before : numpy array

The values of the measure of interest in the “before” condidtion

values_after : numpy array

The values of the measure of interest in the “after” condidtion

measure_name : str

The name of the measure of interest (for y-axis title)

sampleID : str

The name of the sample

output_prefix : str

Full path to and prefix of desired output plot

MarkerSize : float

Size in points^2

MarkerAlpha : float

Transparency (0 to 1)

Xlim : float

Maximum X value

YMin : str, int, or float

If “auto”, will allow matplotlib to automatically determine limit. Otherwise,
will set the y axis minimum to the value provided (int or float)

YMax : str, int, or float

If “auto”, will allow matplotlib to automatically determine limit. Otherwise,
will set the y axis maximum to the value provided (int or float)

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

Color : str

Color to use for points. See matplotlib documentation for acceptable options

	Returns

	int

0 if plotting successful, 1 otherwise

xyalign.variants module

	
class xyalign.variants.VCFFile(filepath, bgzip='bgzip', tabix='tabix', no_initial_compress=False)

	A class for working with external vcf files.

Attributes

	filepath

	(str) Full path to external vcf file

	bgzip

	(str) Full path to bgzip. Default = ‘bgzip’

	tabix

	(str) Full path to tabix. Default = “tabix”

	
is_bgzipped()

	Checks to see if vcf file is gzipped, simply by looking for a .gz or
.bgz ending.
If .gz or .bgz ending exists, assumes file is compressed using bgzip.

	Returns

	bool

True if ends in .gz, False otherwise

	
compress_vcf()

	Compresses vcf file using bgzip.

	Returns

	bool

True if successful

	Raises

	RuntimeError

If return code from external call is not 0

	
index_vcf()

	Indexes vcf file using tabix. If file does not end in .gz, will
compress with bgzip (by calling self.compress_vcf).

Note: Files MUST be compressed using bgzip.

	Returns

	bool

True if successful.

	Raises

	RuntimeError

If return code from external call is not 0.

	
parse_platypus_VCF(site_qual, genotype_qual, depth, chrom)

	Parse vcf generated by Platypus to grab read balance. Note that this
is hard-coded to Platypus (version 0.8.1) and will not generalize to vcfs
generated with other programs (and, potentially, other versions of Platypus)

	Parameters

	site_qual : int

Minimum (PHRED) site quality at which sites should be included

genotype_qual : int

Minimum (PHRED) genotype quality at which sites should be included

depth : int

Minimum depth at which sites should be included

chrom : str

Name of the chromosome to include

	Returns

	tuple

	five corresponding arrays of the same length:

	(position across the chromosome, site quality, read balance,
genotype quality, and depth)

	
plot_variants_per_chrom(chrom_list, sampleID, output_prefix, site_qual, genotype_qual, depth, MarkerSize, MarkerAlpha, bamfile_obj, variant_caller, homogenize, dataframe_out, min_count, window_size, x_scale=1000000, target_file=None, include_fixed=False)

	Parses a vcf file and plots read balance in separate plots
for each chromosome in the input list

	Parameters

	chrom_list : list

Chromosomes to include

sampleID : str

Sample ID (for plot titles)

output_prefix : str

Full path to and prefix of desired output plots

site_qual : int

Minimum (PHRED) site quality at which sites should be included

genotype_qual : int

Minimum (PHRED) genotype quality at which sites should be included

depth : int

Minimum depth at which sites should be included

MarkerSize : float

Size of markers (matplotlib sizes) to use in the figure

MarkerAlpha : float

Transparency (matplotlib values, 0 to 1) of markers

bamfile_obj : BamFile() object

Used to get chromosome lengths only

variant_caller : str

Variant caller used to generate vcf - currently only “platypus” supported

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

dataframe_out : str

Full path of file to write pandas dataframe to. Will overwire if exists

min_count : int

Minimum number of variants to include a window for plotting.

window_size

If int, the window size to use for sliding window analyses, if None
intervals from target_file

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

target_file : str

Path to bed_file containing regions to analyze instead of
windows of a fixed size. Will only be engaged if window_size is None

include_fixed : bool

If False, only plots histogram for values between 0.05 and 1.0. If
True, plots histogram of all variants.

	Returns

	int

0 if variants to analyze; 1 if no variants to analyze on any chromosome

	
xyalign.variants.read_balance_per_window(chrom, positions, readBalance, sampleID, homogenize, chr_len, window_size, target_file=None)

	Calculates mean read balance per genomic window (defined by size or an
external target bed file) for a given chromosome. Takes as input an array
of positions and an array of read balances - the order of which must
correspond exactly. In addition, the positions are expected to ALL BE ON
THE SAME CHROMOSOME and be in numerically sorted order (i.e., the output
of parse_platypus_VCF())

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Positions along the chromosome (same length as readBalance)

readBalance : numpy array

Read balance corresponding with the positions in the positions array

sampleID : str

Sample name or id to include in the plot title

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

chr_len : int

Length of chromosome. Ignored if target_file is provided.

window_size

If int, the window size to use for sliding window analyses, if None
intervals from target_file

target_file : str

Path to bed file containing regions to analyze instead of
windows of a fixed size. Will only be engaged if window_size is None

	Returns

	pandas dataframe

With columns: “chrom”, “start”, “stop”, “balance”, and “count”

	
xyalign.variants.plot_read_balance(chrom, positions, readBalance, sampleID, output_prefix, MarkerSize, MarkerAlpha, homogenize, chrom_len, x_scale=1000000)

	Plots read balance at each SNP along a chromosome

	Parameters

	chrom : str

Name of the chromosome

positions : numpy array

Positions along the chromosome (same length as readBalance)

readBalance : numpy array

Read balance corresponding with the positions in the positions array

sampleID : str

Sample name or id to include in the plot title

output_prefix : str

Desired prefix (including full path) of the output files

MarkerSize : float

Size of markers (matplotlib sizes) to use in the figure

MarkerAlpha : float

Transparency (matplotlib values) of markers for the figure

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

chrom_len : int

Length of chromosome

x_scale : int

Divide all x values (including Xlim) by this value. Default is 1000000 (1MB)

	Returns

	int

0

	
xyalign.variants.hist_read_balance(chrom, readBalance, sampleID, homogenize, output_prefix, include_fixed=False)

	Plots a histogram of read balance values between 0.05 and 1.0 (non-incusive)

	Parameters

	chrom : str

Name of the chromosome

readBalance : list or numpy array

Read balance values

sampleID : str

Sample name or id to include in the plot title

homogenize: bool

If True, all read balance values less than 0.5 will be transformed
by subtracting the value from 1. For example, the values 0.25 and
0.75 would be treated as equivalent.

output_prefix : str

Desired prefix (including full path) of the output files

include_fixed : bool

If False, only plots histogram for values between 0.05 and 1.0. If
True, plots histogram of all variants.

	Returns

	int

0 if plotting successful, 1 otherwise.

xyalign.xyalign module

	
xyalign.xyalign.parse_args()

	Parse command-line arguments

	Returns

	Parser argument namespace

	
xyalign.xyalign.ref_prep(ref_obj, ref_mask, ref_dir, xx, xy, y_chromosome, samtools_path, bwa_path, bwa_index)

	Reference prep part of XYalign pipeline.

	Creates two reference fasta files. Both will include masks provied with

ref_mask. One will additionally have the entire Y chromosome
hard masked.

	Indexes (.fai, .dict, and optionally bwa indices) both new references

	Parameters

	ref_obj : RefFasta() object

A reftools.RefFasta() object of a fasta reference file to be processed

ref_mask : list or None

List of files to use to hard-mask references. None will ignore masking.

ref_dir : str

Path to output directory

xx : str

Path to XX output reference

xy : str

Path to XY output reference

y_chromosome : str

Name of Y chromosome in fasta

samtools_path : str

The path to samtools (i.e, “samtools” if in path)

bwa_path : str

The path to bwa (i.e, “bwa” if in path)

bwa_index : bool

If True, create bwa indices. Don’t if False.

	Returns

	tuple

Paths to two masked references (y_masked, y_unmasked)

	
xyalign.xyalign.chrom_stats(bam_obj_list, chrom_list, use_counts)

	Runs chrom stats module.

Calculates mean depth and mapq across entire scaffolds for a list of bam
files

	Returns

	tuple

Tuple containing two dictionaries with results for
depth and mapq, respectively. Or, if use_counts is True, returns a
tuple containing the count dictionary and None.

	
xyalign.xyalign.bam_analysis(input_bam_obj, platypus_calling, platypus_path, vcf_log, ref_obj, input_chroms, cpus, out_vcf, no_variant_plots, window_size, target_bed, sample_id, readbalance_prefix, variant_site_quality, variant_genotype_quality, variant_depth, marker_size, marker_transparency, homogenize_read_balance, data_frame_readbalance, min_variant_count, no_bam_analysis, ignore_duplicates, exact_depth, whole_genome_threshold, mapq_cutoff, min_depth_filter, max_depth_filter, depth_mapq_prefix, bam_data_frame, output_bed_high, output_bed_low, use_bed_for_platypus, coordinate_scale, fixed)

	Runs bam analyis part of XYalign pipeline on bam file.

	(Optionally) calls variants using Platypus

	(Optionally) parses and filters Platypus vcf, and plots read balance

	
	(Optionally) Calculates window based metrics from the bam file:

	depth and mapq

	(optionally) Plots window-based metrics

	Outputs two bed files: high quality windows, and low quality windows.

	Parameters

	input_bam_obj : bam.BamFile() object

platypus_calling : bool

If True, will call and analyze variants

platypus_path : str

Command to call platypus (e.g, “platypus”)

vcf_log : str

Path to file for platypus log

ref_obj : reftools.RefFasta() object

input_chroms : list

Chromosomes to analyze

cpus : int

Number of threads/cpus

out_vcf : str

Output vcf path/name

no_variant_plots : bool

If True, will not plot read balance

window_size : int or None

Window size for sliding window analyses (both bam and vcf). If None,
will use regions in target_bed

target_bed : str or None

Path to bed file containing targets to use in sliding window analyses

sample_id : str

readbalance_prefix : str

Prefix, including full path, to use for output files for
readbalance analyses

variant_site_quality : int

Minimum site quality (PHRED) for a site to be included in
readbalance analyses

variant_genotype_quality : int

Minimum genotype quality for a site to be included in read balance analyses

variant_depth : int

Minimum depth for a site to be included in read balance analyses

marker_size : float

Marker size for plotting genome scatter plots

marker_transparency: float

Value to use for marker transparency in genome scatter plots

homogenize_read_balance : bool

If true, will subtract values less than 0.5 from 1. I.e., 0.25 and 0.75
would be treated equivalently

data_frame_readbalance: str

Path of output file for full read balance dataframe

min_variant_count : int

Minimum number of variants in a given window for the window to be
plotted in window-based read balance analyses

no_bam_analysis : bool

If True, no bam analyses will take place

ignore_duplicates : bool

If True, duplicates excluded from bam analyses

exact_depth : bool

If True, exact depth calculated in each window. Else, a much faster
approximation will be used

whole_genome_threshold : bool

If True, values for depth filters will be calculated using mean from
across all chromosomes included in analyses. Else, mean will be taken
per chromosome

min_depth_filter : float

Minimum depth threshold for a window to be considered high. Calculated
as mean depth * min_depth_filter.

max_depth_filter : float

Maximum depth threshold for a window to be considered high. Calculated
as mean depth * min_depth_filter.

depth_mapq_prefix : str

Prefix, including full path, to be used for files output from depth and
mapq analyses

bam_data_frame : str

Full path to output file for dataframe containing all data from bam
analyses

output_bed_high : str

Full path to output bed containing high quality (i.e., passing
filters) windows

output_bed_low : str

Full path to output bed containing low quality (i.e., failing
filters) windows

use_bed_for_platypus : bool

If True, use output_bed_high as regions for Platypus calling

coordinate_scale : int

Divide all coordinates by this value for plotting. In most cases, 1000000
will be ideal for eukaryotic genomes.

fixed : bool

If False, only plots histogram for values between 0.05 and 1.0
(non-inclusive). If True, plots histogram of all variants.

	Returns

	tuple

(list of pandas dataframes with passing windows,
list of pandas dataframes with failing windows)

	
xyalign.xyalign.ploidy_analysis(passing_df, failing_df, no_perm_test, no_ks_test, no_bootstrap, input_chroms, x_chromosome, y_chromosome, results_dir, num_permutations, num_bootstraps, sample_id)

	Runs the ploidy analysis part of XYalign.

	Runs permutation test to systematically compare means between

every possible pair of chromosomes

	Runs K-S two sample test to systematically compare distributions between

every possible pair of chromosomes

	Bootstraps the mean depth ratio for every possible pair of chromosomes

	Parameters

	passing_df : list

Passing pandas dataframes, one per chromosome

failing_df : list

Failing pandas dataframes, one per chromosome

no_perm_test : bool

If False, permutation test will be run

no_ks_test : bool

If False, KS test will be run

no_bootstrap : bool

If False, bootstrap analysis will be run

input_chroms : list

Chromosomes/scaffolds to analyze

x_chromosome : list

X-linked scaffolds

y_chromosome : list

Y-likned scaffolds

results_dir : str

Full path to directory to output results

num_permutations : int

Number of permutations

num_bootstraps : int

Number of bootstrap replicates

sample_id : str

	Returns

	dictionary

Results for each test. Keys: perm, ks, boot.

	
xyalign.xyalign.remapping(input_bam_obj, y_pres, masked_references, samtools_path, sambamba_path, repairsh_path, shufflesh_path, bwa_path, bwa_flags, single_end, bam_dir, fastq_dir, sample_id, x_chromosome, y_chromosome, cpus, xmx, fastq_compression, cleanup, read_group_id)

	Runs remapping steps of XYalign.

	Strips, sorts, and re-pair reads from the sex chromosomes (collecting read

group information)

	Maps (with sorting) reads (with read group information) to appropriate

reference based on presence (or not) of Y chromosome

	Merge bam files (if more than one read group)

	Parameters

	input_bam_obj : bam.BamFile() object

y_pres : bool

True if Y chromosome present in individual

masked_references : tuple

Masked reference objects (xx, xy)

samtools_path : str

Path/command to call samtools

sambamba_path : str

Path/command to call sambamba

repairsh_path : str

Path/command to call repair.sh

shufflesh_path : str

Path/command to call shuffle.sh

bwa_path : str

Path/command to call bwa

bwa_flags : str

Flags to use for bwa mapping

single_end : bool

If True, reads treated as single end

bam_dir : str

Path to output directory for bam files

fastq_dir : str

Path to output directory for fastq files

sample_id : str

x_chromosome : list

X-linked scaffolds

y_chromosome : list

Y-linked scaffolds

cpus : int

Number of threads/cpus

xmx : str

Value to be combined with -Xmx for java programs (i.e., 4g would
result in -Xmx4g)

fastq_compression : int

Compression level for fastq files. 0 leaves fastq files uncompressed.
Otherwise values should be between 1 and 9 (inclusive), with
larger values indicating more compression

cleanup : bool

If True, will delete temporary files

read_group_id : str

ID to use to add read group information

	Returns

	str

Path to bam containing remapped sex chromsomes

	
xyalign.xyalign.swap_sex_chroms(input_bam_obj, new_bam_obj, samtools_path, sambamba_path, x_chromosome, y_chromosome, bam_dir, sample_id, cpus, xyalign_params)

	Switches sex chromosmes from new_bam_file with those in original bam file

	Parameters

	input_bam_obj : bam.BamFile() object

Original input bam file object

new_bam_obj : bam.BamFile() object

Bam file object containing newly mapped sex chromosomes (to insert)

samtools_path : str

Path/command to call samtools

sambamba_path : str

Path/command to call sambamba

x_chromosome : list

X-linked scaffolds

y_chromosome : str

Y-linked scaffolds

bam_dir : str

Path to bam output directory

sample_id : str

cpus : int

Number of threads/cpus

xyalign_params : dict

Dictionary of xyalign_params to add to bam header

	Returns

	str

Path to new bam file containing original autosomes and new sex chromosomes

	
xyalign.xyalign.main()

	

Release History

1.1.6

	Available: https://github.com/WilsonSayresLab/XYalign/releases/tag/v1.1.6

	Fix bug in x axis scaling in variants.plot_read_balance when scaling wasn’t in MB, KB, or BP

	Additional analyses for publication included in “analyses” directory

1.1.5

	Available: https://github.com/WilsonSayresLab/XYalign/releases/tag/v1.1.5

	Fix bug in variants.read_balance_per_window in calculating final window length

1.1.3

	Available: https://github.com/WilsonSayresLab/XYalign/releases/tag/v1.1.2

	More work making utility scripts available in pip and bioconda

1.1.2

	Available: https://github.com/WilsonSayresLab/XYalign/releases/tag/v1.1.2

	Fixed import errors for the utility scripts (plot_cout_stats, plot_window_differences, and explore_thresholds)

1.1.1

	Available: https://github.com/WilsonSayresLab/XYalign/releases/tag/v1.1.1

	Couple of minor documentation and testing updates

1.1.0

	
	Updates across all of XYalign, but most substantial were:

	
	The addition of plot_cout_stats, plot_window_differences, and explore_thresholds

	XYalign now outputs Adobe Illustrator compatible pdfs for figures

	Fixing some bugs in VCF parsing

	Allowing plotting of fixed variants in read balance figures, if desired

	See detailed list of changes here: https://github.com/WilsonSayresLab/XYalign/blob/master/xyalign/CHANGELOG.txt

1.0.0

	Available: https://github.com/WilsonSayresLab/XYalign/releases/tag/v1.0.0

	Major updates across all of XYalign

	See detailed list of changes here: https://github.com/WilsonSayresLab/XYalign/blob/master/xyalign/CHANGELOG.txt

0.1.1

	Available: https://github.com/WilsonSayresLab/XYalign/releases/tag/v0.1.1

	Minor documentation updates

0.1.0

	Available: https://github.com/WilsonSayresLab/XYalign/releases/tag/v0.1

	Initial release

	Released April 5, 2017

	Full support of human-style reference genomes with X and Y chromosomes.

	No support for reference genomes without Y chromosome

0.0.1 Prerelease

	Development version until April 4, 2017

 Python Module Index

 x

 		 	

 		
 x	

 	[image: -]
 	
 xyalign	

 	
 	
 xyalign.assemble	

 	
 	
 xyalign.bam	

 	
 	
 xyalign.ploidy	

 	
 	
 xyalign.reftools	

 	
 	
 xyalign.utils	

 	
 	
 xyalign.variants	

 	
 	
 xyalign.xyalign	

Index

 A
 | B
 | C
 | E
 | G
 | H
 | I
 | K
 | M
 | O
 | P
 | R
 | S
 | V
 | X

A

 	
 	analyze_bam() (xyalign.bam.BamFile method)

B

 	
 	bam_analysis() (in module xyalign.xyalign)

 	BamFile (class in xyalign.bam)

 	
 	before_after_plot() (in module xyalign.utils)

 	bootstrap() (in module xyalign.ploidy)

 	bwa_mem_mapping_sambamba() (in module xyalign.assemble)

C

 	
 	check_bam_fasta_compatibility() (in module xyalign.utils)

 	check_bwa_index() (xyalign.reftools.RefFasta method)

 	check_chrom_in_bam() (xyalign.bam.BamFile method)

 	check_compatibility_bam_list() (in module xyalign.utils)

 	check_seq_dict() (xyalign.reftools.RefFasta method)

 	chrom_counts() (xyalign.bam.BamFile method)

 	chrom_stats() (in module xyalign.xyalign)

 	(xyalign.bam.BamFile method)

 	chromosome_bed() (xyalign.bam.BamFile method)

 	(xyalign.reftools.RefFasta method)

 	
 	chromosome_lengths() (xyalign.bam.BamFile method)

 	(xyalign.reftools.RefFasta method)

 	chromosome_names() (xyalign.bam.BamFile method)

 	(xyalign.reftools.RefFasta method)

 	chromosome_wide_plot() (in module xyalign.utils)

 	compress_vcf() (xyalign.variants.VCFFile method)

 	conditional_index_bwa() (xyalign.reftools.RefFasta method)

 	conditional_seq_dict() (xyalign.reftools.RefFasta method)

E

 	
 	extract_read_group() (xyalign.bam.BamFile method)

 	
 	extract_regions() (xyalign.bam.BamFile method)

G

 	
 	get_chrom_length() (xyalign.bam.BamFile method)

 	(xyalign.reftools.RefFasta method)

H

 	
 	hist_array() (in module xyalign.utils)

 	
 	hist_read_balance() (in module xyalign.variants)

I

 	
 	index_bam() (xyalign.bam.BamFile method)

 	index_bwa() (xyalign.reftools.RefFasta method)

 	index_fai() (xyalign.reftools.RefFasta method)

 	index_vcf() (xyalign.variants.VCFFile method)

 	
 	is_bgzipped() (xyalign.variants.VCFFile method)

 	is_faidxed() (xyalign.reftools.RefFasta method)

 	is_indexed() (xyalign.bam.BamFile method)

 	isolate_chroms() (xyalign.reftools.RefFasta method)

K

 	
 	ks_two_sample() (in module xyalign.ploidy)

M

 	
 	main() (in module xyalign.xyalign)

 	make_region_lists_chromosome_filters() (in module xyalign.utils)

 	
 	make_region_lists_genome_filters() (in module xyalign.utils)

 	mask_reference() (xyalign.reftools.RefFasta method)

 	merge_bed_files() (in module xyalign.utils)

O

 	
 	output_bed() (in module xyalign.utils)

 	
 	output_bed_no_merge() (in module xyalign.utils)

P

 	
 	parse_args() (in module xyalign.xyalign)

 	parse_platypus_VCF() (xyalign.variants.VCFFile method)

 	permutation_test_chromosomes() (in module xyalign.ploidy)

 	platypus_caller() (xyalign.bam.BamFile method)

 	
 	ploidy_analysis() (in module xyalign.xyalign)

 	plot_depth_mapq() (in module xyalign.utils)

 	plot_read_balance() (in module xyalign.variants)

 	plot_variants_per_chrom() (xyalign.variants.VCFFile method)

R

 	
 	read_balance_per_window() (in module xyalign.variants)

 	ref_prep() (in module xyalign.xyalign)

 	
 	RefFasta (class in xyalign.reftools)

 	remapping() (in module xyalign.xyalign)

S

 	
 	samtools_merge() (in module xyalign.bam)

 	seq_dict() (xyalign.reftools.RefFasta method)

 	sort_bam() (xyalign.bam.BamFile method)

 	
 	strip_reads() (xyalign.bam.BamFile method)

 	swap_sex_chroms() (in module xyalign.xyalign)

 	switch_sex_chromosomes_sambamba() (in module xyalign.bam)

V

 	
 	validate_dir() (in module xyalign.utils)

 	
 	validate_external_prog() (in module xyalign.utils)

 	VCFFile (class in xyalign.variants)

X

 	
 	xyalign (module)

 	xyalign.assemble (module)

 	xyalign.bam (module)

 	xyalign.ploidy (module)

 	
 	xyalign.reftools (module)

 	xyalign.utils (module)

 	xyalign.variants (module)

 	xyalign.xyalign (module)

 _static/up.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 XYalign: Inferring and Correcting for Sex Chromosome Ploidy in Next-Generation Sequencing Data

 		
 Installation

 		
 Operating System

 		
 Requirements

 		
 Obtaining XYalign

 		
 Pip

 		
 Usage Overview

 		
 The Basics

 		
 Requirements

 		
 The Pipeline

 		
 Suggested Command Lines

 		
 Recommendations for Incorporating XYalign into Pipelines

 		
 XYalign - Speed and Memory

 		
 Exome data

 		
 Nonhuman genomes

 		
 Analyzing arbitrary chromosomes

 		
 Using XYalign as a Python library

 		
 Full List of Command-Line Flags

 		
 Frequently Asked Questions

 		
 Does XYalign require X and Y chromosomes?

 		
 Will XYalign work with genomes from other organisms?

 		
 API

 		
 xyalign

 		
 xyalign package

 		
 xyalign package

 		
 Subpackages

 		
 Submodules

 		
 Module contents

 		
 xyalign.assemble module

 		
 xyalign.bam module

 		
 xyalign.ploidy module

 		
 xyalign.reftools module

 		
 xyalign.utils module

 		
 xyalign.variants module

 		
 xyalign.xyalign module

 		
 Release History

 		
 1.1.6

 		
 1.1.5

 		
 1.1.3

 		
 1.1.2

 		
 1.1.1

 		
 1.1.0

 		
 1.0.0

 		
 0.1.1

 		
 0.1.0

 		
 0.0.1 Prerelease

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

